Application of Soft Computing

NETWORK ARCHITECTURES

1. Single-Layer Feedforward Networks

INPUT OUTPUT X;: Input neurons
LAYER LAYER y;: Output neurons
w; . Weights

Input neurons Output neurons

MULTILAYER FEED FORWARD NETWORK

X; . Input neurons
y; . Hidden neurons
Z, . Output neurons
v;j - Input hidden
layer weights

wj - Output hidden
layer weights

Input layer Hidden layer Output layer

e
SR

' A '.' '
R
O\
ANIBINS

[nput layer Layer of Layer of
of source hidden output
nodes neurons neurons

Perceptron

The perceptron is the simplest form of a neural network used for the classifica-
tion of patterns said to be linearly separable (i.e., patterns that lie on opposite sides of a
hyperplane). Basically, it consists of a single neuron with adjustable synaptic weights
and bias. The algorithm used to adjust the free parameters of this neural network first
appeared in a learning procedure developed by Rosenblatt (1958,1962) for his percep-
tron brain model.! Indeed, Rosenblatt proved that if the patterns (vectors) used to
train the perceptron are drawn from two linearly separable classes, then the percep-
tron algorithm converges and positions the decision surface in the form of a hyper-
plane between the two classes. The proof of convergence of the algorithm is known as
the perceptron convergence theorem. The perceptron built around a single neuron is
limited to performing pattern classification with only two classes (hypotheses).

Signal-flow
graph of the perceptron

Inputs y Output

m
V= E’w,-xi-i"b
i=1

The goal of the perceptron is to correctly classify the set of externally applied stimuli
X1, Xy, ..., X, int0 One of two classes, €, or 6,. The decision rule for the classification is
to assign the point represented by the inputs x,, x,, ..., x,, to class €, if the perceptron
output y is +1 and to class 6, if it is —1.

The synaptic weights w,, w,, ..., w,, of the perceptron can be adapted on an
iteration-by-iteration basis. For the adaptation we may use an error-correction rule
known as the perceptron convergence algorithm.

For the perceptron to function properly, the two classes €, and €, must be lin-
early separable. This, in turn, means that the patterns to be classified must be suffi-
ciently separated from each other to ensure that the decision surface consists of a

hyperplane. %,

Suppose then that the input variables of the perceptron originate from two lin-
early separable classes. Let &, be the subset of training vectors x,(1), x,(2), ... that
belong to class €;, and let &, be the subset of training vectors x,(1), x,(2), ... that
belong to class 6,. The union of ¥, and %, is the complete training set ¥. Given the sets

of vectors &, and &, to train the classifier, the training process involves the adjustment
of the welght vector w in such a way that the two classes €, and €, are lmearly separa-
ble. That 1s, there exists a weight vector w such that we may state

w’x > (O for every input vector x belonging to class %,

w’x = 0 for every input vector x belonging to class 4,

The algorithm for adapting the weight vector of the elementary perceptron may
now be formulated as follows:

1. If the nth member of the training set, x(n), is correctly classified by the weight
vector w(n) computed at the nth iteration of the algorithm, no correction is made to
the weight vector of the perceptron in accordance with the rule:

w(n + 1) = w(n) if w'x(n) > 0 and x(n) belongs to class 6,

w(n + 1) = w(n) if wx(n) < 0 and x(n) belongs to class 4,

2. Otherwise, the weight vector of the perceptron is updated in accordance with

the rule
w(n + 1) = wn) — n(n)x(n) if w/(n)x(n) > 0 and x(n) belongs to class %, (3.55)
win + 1) = wn) + n(n)x(n) if w'(n)x(n) < 0 and x(n) belongs to class €, '

where the learning-rate parameter n(n) controls the adjustment applied to the weight
vector at iteration n. -

Suppose that we are going to work on AND Gate problem using perceptron. The gate returns
true value if and only if both inputs are true.

We are going to set weights randomly. Let's say that w, = 0.9 and w, = 0.9. Learning rate=0.5,
bias = 0.5

X, X, Y
0O 0 ©
o 1 0
1 0 0
1 1 1

ADAPTIVE LINEAR NEURON (ADALINE)

In 1959, Bernard Widrow and Marcian Hoff of Stanford
developed models they called ADALINE (Adaptive Linear
Neuron) and MADALINE (Multilayer ADALINE). These
models were named for their use of Multiple ADAptive LINear
Elements. MADALINE was the first neural network to be
applied to a real world problem. It is an adaptive filter which
eliminates echoes on phone lines.

ADALINE

+ 1

ADALINE MODEL

Adaptive
algorithm

flym) Y

Output error
generator

~ Learning supervisor

ADALINE LEARNING RULE

Adaline network uses Delta Learning Rule. This rule is also
called as Widrow Learning Rule or Least Mean Square Rule.
The delta rule for adjusting the weights is given as (i =1 to n).

Aw; = a(t — yin)X;

Aw; = weight change

learning rate

Q
|

x = vector of activation of input unit

n
yin = Det input to output unit,i.e.,Y = Z i Wy
—

Lo

target output

MADALINE Network

e A MADALINE (Many ADALINE) network is created by combining a number of
The network of ADALINES can span many layers.

e The learning rule adopted by MADALINE network is termed as MADALINE /
Rule' (MR) and is a form of supervised learning.
e In this method, the objective is to adjust the weights such that the error is mi

the current training pattern, but with as little damage to the learning acquire
previous training patterns.

e |t solves the problem of non-linear separatibility.

Outputs
>
4

A | : ADALINE nelwc‘

Multilayer Perceptron Model

A multilayer perceptron has three distinctive characteristics:

1. Non-linear Activation Function

The model of each neuron in the network includes a nonlinear activation func-
tion. The important point to emphasize here is that the nonlinearity is smooth (i.e.,
differentiable everywhere), as opposed to the hard-limiting used in Rosenblatt’s
perceptron. A commonly used form of nonlinearity that satisfies this require-
ment is a sigmoidal nonlinearity' defined by the logistic function:

1
1+ exp(—;)

Yi

2. One or more hidden layers: To learn Complex task

3. High Degree of Connectivity

——= Functwon signals
== Erroe signals

FIGURE 4.2 Illustration of
the directions of two basic
signal flows in a multilayer
perceptron: forward
propagation of function

signals and back-propagation
FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers. of error signals

Networks typically consisting of input, hidden, and output layers.
Commonly referred to as Multilayer perceptrons.

Popular learning algorithm is the error backpropagation algorithm
(backpropagation, or backprop, for short), which is a generalization of the
LMS rule.

— Forward pass: activate the network, layer by layer

— Backward pass: error signal backpropagates from output to hidden
and hidden to input, based on which weights are updated.

Backpropagation Algorithm

Backpropagation is a supervised learning algorithm, for training Multi-
layer Perceptron (Artificial Neural Networks).

Each hidden or output neuron of a multilayer perceptron is designed to perform
two computations:

1. The computation of the function signal appearing at the output of a neuron,
which is expressed as a continuous nonlinear function of the input signal and
synaptic weights associated with that neuron.

2. The computation of an estimate of the gradient vector (i.e., the gradients of the
error surface with respect to the weights connected to the inputs of a neuron),
which is needed for the backward pass through the network.

To calculate gradient vector or gradient of error surface, derivative of
activation function will be required. Hence before getting into the
computation of back propagation algorithm, Let us go through some
preliminary work to find out the derivatives of commonly used
activation functions.

Activation Function

1. Logistic Function. This form of sigmoidal nonlinearity in its general form is
defined by

1
1 + exp(—av;(n))

¢;(v;(n)) =

a>0and —o <y(n) <ow (4.30)

where v;(n) is the induced local field of neuron j. According to this nonlinearity, the
amphtude of the output lies inside the range 0 < y; < 1. Differentiating Eq (4.30) with
respect to v;(n), we get

aexp(—av;(n))
[1 + exp(—av,(n))]?

With y;(n) = ¢;(v;(n)), we may eliminate the exponential term exp(—av;(n)) from
Eq. (4.31), and so express the derivative ¢;(v;(n)) as

¢; (vj(n)) = ay;(n)[1 — y;(n)] (4.32)

For a neuron j located in the output layer, y;(n) = o;(n). Hence, we may express the
local gradient for neuron j as

¢j(vy(n)) = (4.31)

2. Hyperbolic tangent function. Another commonly used form of sigmoidal non-
linearity is the hyperbolic tangent function, which in its most general form is defined by

¢;(v;(n)) = a tanh(bv;(n)), (a,b) >0 (4.35)

where a and b are constants. In reality, the hyperbolic tangent function is just the logis-
tic function rescaled and biased. Its derivative with respect to v;(n) is given by

¢;(v;(n)) = absech’(bv;(n))
= ab(1 — tanh?(by;(n))) (4.36)

- —Z[a — yj-(n)] [a + y;(ﬂ)]

Backpropagation Algorithm

Yo = +1

wjp(n) = bj(n)

dj(n)
?
" . : ;)
yi(n) % o e g y’<(>n) — & 0 ¢(n)

vi(n) = éwji(’?)}’i(n)

Signal-flow graph highlighting the details of output neuronj.

-{ence the function signal y;(n) appearing at the output of neuron j at iteration » is
yj(n) = ¢;(v;(n))

In a manner similar to the LMS algorithm, the back-propagation algorithm
applies a correction Aw;;(n) to the synaptic weight w;,(n), which is proportional to the
partial derivative d€(n)/ow;(n). According to the chain rule of calculus, we may
express this gradient as:

d€(n) _ 9€(n) dej(n) dy;(n) dvi(n)
ow;(n) - de;(n) dy;(n) dv;(n) ow;(n)

We define the instantaneous value of the error energy for neuron j as %e}(n).
Correspondingly, the instantaneous value €(n) of the total error energy is obtained by
summing %e}(n) over all neurons in the output layer; these are the only “visible” neu-
rons for which error signals can be calculated directly. We may thus write

=3 S

de;(n)

]

= ej(n)

de;(n)

= —1
dy;(n)
oV
= g
d
i ((’;)) = yi(n)
o (4.14)
9é
o = /e
The correction Afwﬁ(n) applied to w;(n) is defined by the delta rule:
_ %)
Awg(n) = —m dw;(n)

Aw;(n) = nd;(n)y;(n)
d3,(n) = e;(n)ej(v(n))

Case 2 Neuron j Is a Hidden Node

Neurorn § Neuron k&
A A

+1

dy(n)

@(") }’;‘(n) ‘t(wkj(n)
> ‘\ﬁ >

v(n) 90_(2 ka\’i) "}

O e,(n)

€ de (n) dvi(n)
2}’;'83 B % e(n) dv(n) dy;(n)

ex(n) = di(n) — yi(n)

= di(n) — ¢i(vx(n)), neuron k is an output node

deln) _ —or((n))

dvi(n)

n(n) = i wy;(n) y;(n) sz((g)) = wy;(n)
TN _ S em)oi(vu(m)we(n)
dy;(n) k

= 2 d(n)wy(n)

d,(n) = ¢/ (vi(n)) > dp(n)wy;(n), neuron j 1s hidden
| k

(4.24)

Weight learning- local \ [input signal\
correction | = | rate parameter |-| gradient |-| of neuron j

Ay () n TONANSTON

Second, the local gradient ;(n) depends on whether neuron j 1s an output node or a
hidden node:

1. If neuron j is an output node, §;(n) equals the product of the derivative ¢;(v;(n))

and the error signal ¢;(n), both of which are associated with neuron j;see Eq.(4.14).

2. If neuron jis a hidden node, &,(n) equals the product of the associated derivative

. ¢;(v;(n)) and the weighted sum of the ds computed for the neurons in the next
hidden or output layer that are connected to neuron i:see Eq. (4.24).

Role of Learning Rate

The effectiveness and convergence of Error backpropagation are
based on the value of learning constant or learning rate n. The
amount by which weights of network are updated is directly
proportional to the learning rate n and hence it plays the important
role in the convergence of training.

When we use a larger value of n, our network takes wider steps to
reach global minima of error plot. Due to a larger value of n, there is
a chance of missing global minima if error plot yields shorter global
minima. Similarly if we use a smaller value of n, our network takes
shorter steps to reach global minima of error plot but in this case,
there is a chance of stuck in local minima of error plot.

A simple method of increasing the learning rate yet avoiding the
danger of instability is to modify the delta rule of weight updation as:

Aw;(n) = adw;(n — 1) + nd;(n)y;(n)
Where a is the momentum term whose value is taken between 0.5
and 0.9

> m
>m

(@ n=15 (b) n =02

> m

() n=09

Convergence paths for different learning coefficients.

XOR PROBLEM | Neuron 1

Input Hidden Output
layer layer layer

(a)

(a) Decision boundary
constructed by

hidden neuron 1 of the
network in Fig. 4.8.

(b) Decision boundary
constructed by hidden
neuron 2 of the network.

(c) Decision boundaries
constructed by the complete
network.

0.1

0,0) &

0.1) (L1)

' (1,0)

(0,0)

Train the network using error back propagation learning algorithm

Input layer Hidden layer Output layer

