Application of Soft Computing

PROBLEM SOLVING TECHNIQUES

HARD COMPUTING SOFT COMPUTING
Precise Models Approximate Models
: Traditional Functional
S{rggi% e Numerical Approximate Approximation
Sl Modeling and Reasoning and Randomized

Search Search

Soft Computing

Soft computing combines different techniques
and concepts. It can handle imprecision and
uncertainty. Fuzzy logic, neurocomputing,
evolutionary and genetic programming, and
probabilistic computing are fields of soft
computing. Soft computing is designed to model
and enable solutions to real world problems,
which cannot be modelled mathematically.

Hard Computing Soft Computing

[t uses precisely stated analytical It 1s tolerant to 1mprecision,

model. uncertainty, partial truth and
approximation.

It is based on binary logic and crisp | It 1s based on fuzzy logic and

systems.

probabilistic reasoning.

It has features such as precision and
categoricity.

It has features such as approximation

and dispositionality.

It is deterministic in nature.

It 1s stochastic 1n nature.

It can work with exact input data.

[t can work with ambiguous and noisy
data.

It performs sequential computation.

[t performs parallel computation.

It produces precise outcome.

It produces approximate outcome.

The main computing paradigm of soft computing
are:

* Neural Networks
* Fuzzy systems
* Genetic Algorithms

Neural network for learning and adaptivity.

Fuzzy set are for knowledge representation via
fuzzy If — Then rules.

Genetic algorithm for evolutionary computation.

MULTIDISCIPLINARY VIEW OF NEURAL
NETWORKS

{ Computer science

artificial inteligence Mathematics
Neurobiology (approximation theory,
. optimization)
i Cognitive

,
__Psychology ,\ Y

Neural networks Physics
Linguistics dynamical systems
\ statistical physics

Philosophy

\
o

.

Economics/finance image,i?gg:;??,?cg%shg
ti ies, data mini
(time series, data mining) control theory robotics

FUZZY LOGIC

Origins: Multivalued Logic for treatment of
imprecision and vagueness

— 1930s: Post, Kleene, and Lukasiewicz attempted to
represent undetermined, unknown, and other possible
intermediate truth-values.

— 1937: Max Black suggested the use of a consistency profile
to represent vague (ambiguous) concepts.

— 1965: Zadeh proposed a complete theory of fuzzy sets
(and its isomorphic fuzzy logic), to represent and
manipulate ill-defined concepts.

Fuzzy logic gives us a language (with syntax and local
semantics) in which we can translate our qualitative
domain knowledge.

GENETIC ALGORITHM
EVOLUTIONARY PROCESS

APPLICATIONS OF SOFT COMPUTING

»Handwriting Recognition

>»Image Processing and Data Compression
»Automotive Systems and Manufacturing
»Soft Computing to Architecture
>»Decision-support Systems

»Soft Computing to Power Systems
>»Neuro Fuzzy systems

»Fuzzy Logic Control

»Machine Learning Applications

»Speech and Vision Recognition Systems

>Process Control and So On

ANN: Inspired from Biological Neural

Network
Biological Neurons
Synapse
Axon
/
Nucleus Cell body
(Soma)

Dendntes

BRAIN COMPUTATION

The human brain contains about 10 billion
nerve cells, or neurons. On average, each
neuron is connected to other neurons through
approximately 10,000 synapses.

processing element energy processing style of fault S mtelligent,
elements size use speed computation tolerant " | conscious
10'4 106m (20w [100mz [PEREL oe lges |usually
synapses distnibuted
108 6 |30W | o serial .

: r " 10 alittle | not (yet
transistors 107 m (CPT) 10" Hz centralized Get)

Model of an ANN

Bias

Input
signals ﬁ

Synaptic
weights

Summing -

junction

Activation

function

() Output
Yk
Dendrites
| !
—
—

Cell body

+-
+

V Threshold
—-_‘\

\
D

Summation

?

Axon

ASSOCIATION OF BIOLOGICAL NET
WITH ARTIFICIAL NET

In mathematical terms, we may describe a neuron k by writing the following pair
of equations:

m
Uy = E’wkfxi
j=1
Ve = ¢(u, + by)
m
U = Ewkfxf
j=0

Ye = @(Vg)

Types of Activation Function

1. Threshold Function

1.2
1 @(v)
08¢+
0.6+
0.4}
0.2F
92 —1?5 —; —0:5
(v) = .{1 ifv=0
* 0 ifv<0
{1 lf (" = O
Yk = :
0 ifv, <0

0

0.5

1

1.5

signum function

Output 4}
o(l)

+1 - [r—

— Input

-1 (7]
Threshold

¢(v)

4

1
0

=

ifv>0
ifv=90
ifv<(

Piecewise-Linear Function

1.2

1t
0.8F
0.6
0.4F
0.2+

=y
/.

0 -~
~2 =15

¢(v) = 1

1
-0.5 0 0.5 1

1

1 V= 4+,
4 1
+2>v>—5
P = -1

2

i)

Sigmoid Function

08 L | w(v)

Increasing

-10 -8 -6 4 -2 0 2 4 6 8 10

#(v) = 1 + exp(—av)

where a is the slope parameter of the sigmoid function.

Bipolar Sigmoid hyperbolic tangent function

¢(v) = tanh(v)

NETWORK ARCHITECTURES

1. Single-Layer Feedforward Networks

INPUT OUTPUT X;: Input neurons
LAYER LAYER y;: Output neurons
w; . Weights

Input neurons Output neurons

MULTILAYER FEED FORWARD NETWORK

X; . Input neurons
y; . Hidden neurons
Z, . Output neurons
v;j - Input hidden
layer weights

wj - Output hidden
layer weights

Input layer Hidden layer Output layer

e
SR

' A '.' '
R
O\
ANIBINS

[nput layer Layer of Layer of
of source hidden output
nodes neurons neurons

LAYER PROPERTIES

 Input Layer: Each input unit may be
designated by an attribute value possessed
by the instance.

* Hidden Layer: Not directly observable,
provides nonlinearities for the network.

« Output Layer: Encodes possible values.

FEEDBACK OR RECURRENT NEURAL NETWORK

Input layer Hidden layer Output layer

1. Supervised learning.

Vector describing
state of the
environment

Environment Teacher

Desired
response

/ Actual T2

responsc
o

LLearning
system

(.

Error signal

2. Unsupervised Learning
In unsupervised, or self-organized, learning, there is no external teacher or critic to
oversee the learning process.
Vector describing

state of the
environment

. Learning
Environment
system

3. Reinforced learning

In this method, a teacher though available, does not present the expected answer but only
indicates if the computed output is correct or incorrect. The information provided helps the
network in its learning process. A reward is given for a correct answer computed and a penalty
for a wrong answer. But, reinforced learning is not one of the popular forms of learning.

Primary
reinforcement
signal

State (input)
- veclor
L S Environment Critic
>
Heuristic

reinforcement
signal

L__bh. | ILearning
E

» system

APPLICATIONS OF NEURAL NETWORK

Neural networks have been successfully applied for the solution of a variety of problem
however, some of the common application domains have been listed below:

1. Pattern recognition (PR)/image processing

Neural networks have shown remarkable progress in the recognition of visual images,
handwritten characters, printed characters, speech and other PR based tasks.

2. Optimization/constraint satisfaction

This comprises problems which need to satisfy constraints and obtain optimal solutions.
Examples of such problems include manufacturing scheduling, finding the shortest possible tour
given a set of cities, etc. Several problems of this nature arising out of industrial and
manufacturing fields have found acceptable solutions using NNs.

3. Forecasting and risk assessment

Neural networks have exhibited the capability to predict situations from past trends. They have
therefore, found ample applications in areas such as meteorology, stock market, banking, and
econometrics with high success rates.

McCulloch-Pitts Neuron

The McCulloch-Pitts neuron was the earliest neural network discovered in 1943. It is usually
called as M-P neuron. The M-P neurons are connected by directed weighted paths. It should be
noted that the activation of an M-P neuron is binary, that is, at any time step the neuron may fire
or may not fire. The weights associated with the communication links may be excitatory
(weight 1s positive) or inhibitory (weight 1s negative).

The threshold plays a major role in M-P neuron: There 1s a fixed threshold
if the net input to the neuron 1s greater than the threshold then the neuron fir

1ifyin29

The M-P neuron has no particular training algorithm. An analysis has to be performed m
determine the values of the weights and the threshold. Here the weights of the neuron are set
along with the threshold to make the neuron perform a simple logic function. The M-P neurons
are used as building blocks on which we can model any function or phenomenon, which can be
represented as a logic function.

In M-P Neuron model, our basic assumptions are:
® Here we do only analysis, Threshold will work as activation function
® Weights can be excitatory (+ve) or inhibitory (-ve)
® Possible combinations are (both positive) (1 positive 1 negative) (both negative)
e We will take the value of weights 1
® So possible weights are (+1, +1) (+1, -1) (-1, +1) (-1, -1)

® We will use one from these combinations and try to set the threshold for solving
the problem.

Implement AND function using McCulloch-Pitts neuron model.

The truth table for AND function 1s

X1 X2
0 O

y 0 1
1 0

S O O K

For the network shown in Figure, calculate the net input to the output neuron

1

0.2
e

0.6
— »(X2

For the network shown in Figure, calculate the output of the neuron Y using activation function as

(i) Binary threshold function
(ii) Bipolar threshold function
(iii) Binary sigmoidal function

0.8
e

0.6
o

0.4

Perceptron

The perceptron is the simplest form of a neural network used for the classifica-
tion of patterns said to be linearly separable (i.e., patterns that lie on opposite sides of a
hyperplane). Basically, it consists of a single neuron with adjustable synaptic weights
and bias. The algorithm used to adjust the free parameters of this neural network first
appeared in a learning procedure developed by Rosenblatt (1958,1962) for his percep-
tron brain model.! Indeed, Rosenblatt proved that if the patterns (vectors) used to
train the perceptron are drawn from two linearly separable classes, then the percep-
tron algorithm converges and positions the decision surface in the form of a hyper-
plane between the two classes. The proof of convergence of the algorithm is known as
the perceptron convergence theorem. The perceptron built around a single neuron is
limited to performing pattern classification with only two classes (hypotheses).

Signal-flow
graph of the perceptron

Inputs y Output

m
V= E’w,-xi-i"b
i=1

The goal of the perceptron is to correctly classify the set of externally applied stimuli
X1, Xy, ..., X, int0 One of two classes, €, or 6,. The decision rule for the classification is
to assign the point represented by the inputs x,, x,, ..., x,, to class €, if the perceptron
output y is +1 and to class 6, if it is —1.

The synaptic weights w,, w,, ..., w,, of the perceptron can be adapted on an
iteration-by-iteration basis. For the adaptation we may use an error-correction rule
known as the perceptron convergence algorithm.

For the perceptron to function properly, the two classes €, and €, must be lin-
early separable. This, in turn, means that the patterns to be classified must be suffi-
ciently separated from each other to ensure that the decision surface consists of a

hyperplane. %,

Suppose then that the input variables of the perceptron originate from two lin-
early separable classes. Let &, be the subset of training vectors x,(1), x,(2), ... that
belong to class €;, and let &, be the subset of training vectors x,(1), x,(2), ... that
belong to class 6,. The union of ¥, and %, is the complete training set ¥. Given the sets

of vectors &, and &, to train the classifier, the training process involves the adjustment
of the welght vector w in such a way that the two classes €, and €, are lmearly separa-
ble. That 1s, there exists a weight vector w such that we may state

w’x > (O for every input vector x belonging to class %,

w’x = 0 for every input vector x belonging to class 4,

The algorithm for adapting the weight vector of the elementary perceptron may
now be formulated as follows:

1. If the nth member of the training set, x(n), is correctly classified by the weight
vector w(n) computed at the nth iteration of the algorithm, no correction is made to
the weight vector of the perceptron in accordance with the rule:

w(n + 1) = w(n) if w'x(n) > 0 and x(n) belongs to class 6,

w(n + 1) = w(n) if wx(n) < 0 and x(n) belongs to class 4,

2. Otherwise, the weight vector of the perceptron is updated in accordance with

the rule
w(n + 1) = wn) — n(n)x(n) if w/(n)x(n) > 0 and x(n) belongs to class %, (3.55)
win + 1) = wn) + n(n)x(n) if w'(n)x(n) < 0 and x(n) belongs to class €, '

where the learning-rate parameter n(n) controls the adjustment applied to the weight
vector at iteration n. -

Suppose that we are going to work on AND Gate problem using perceptron. The gate returns
true value if and only if both inputs are true.

We are going to set weights randomly. Let's say that w, = 0.9 and w, = 0.9. Learning rate=0.5,
bias = 0.5

X, X, Y
0O 0 ©
o 1 0
1 0 0
1 1 1

ASSSOCIATIVE MEMORY

Associative Memories, one of the major classes of neural networks, are faint imitations of the
human brain's ability to associate patterns. An Associative Memory (AM) which belongs to the
class of single layer feedforward or recurrent network architecture depending on its association
capability, exhibits Hebbian learning.

An asssociate memory is a storehouse of associated patterns which are encoded in some form.
When the storehouse i1s triggered or incited with a pattern, the associated pattern pair is recalled
or output. The input pattern could be an exact replica of the stored pattern or a distorted or
partial representation of a stored pattern. Figure shown below illustrates the working of an

associative memory.

O " 7
Input pattern >< Recalled
@ @ pattern

Heteroassociative Memory

e [f the associated pattern pairs (X. y) are different and if the model recalls a y given an x or
vice versa, then it is termed as heteroassociative memory.

e It is useful for the association of patterns
e Heteroassociative correlation memories are known as heterocorrelators.

Autoassociative Memory

e Ifx and y refer to the same pattern, then the model is termed as autoassociative memory.

e Autoassociative memories are useful for image refinement, that is, given a distorted or a
partial pattern, the whole pattern stored in its perfect form can be recalled.

e Autoassociative correlation memories are known as autocorrelators.

HEBB NETWORK

Donald Hebb stated in 1949 that in the brain, the learning is performed
by the change in the synaptic gap. Hebb explained it:

“When an axon of cell A is near enough to excite cell B, and
repeatedly or permanently takes place in firing it, some growth
process or metabolic change takes place in one or both the cells
such that A’s efficiency, as one of the cells firing B, is increased.”

HEBB LEARNING

* The weights between neurons whose activities are
positively correlated are increased:

dw..

1)

dt

* Associative memory is produced automatically

~ correlation(X;, X ;)

The Hebb rule can be used for pattern association, pattern
categorization, pattern classification and over a range of other

areas.

Hebbian Learning Algorithm

According to Hebb’s rule, the weights are found to increase
proportionately to the product of input and output. It means that
in a Hebb network if two neurons are interconnected then the
weights associated with these neurons can be increased by
changes in the synaptic strength.

This network is suitable for bipolar data. The Hebbian learning
rule is generally applied to logic gates.

The weights are updated as:

W (new) = w (old) + x*y

Training Algorithm For Hebbian Learning Rule
The training steps of the algorithm are as follows:

1. Initially, the weights are set to zero, i.e. w =0 for all inputs i =1
to n and n is the total number of input neurons.

2. Let s be the output. The activation function for inputs is
generally set as an identity function (linear function of slope 1).

3. The activation function for output is also set to y=t.

4. The weight adjustments and bias are adjusted to:

W (n) = w(o)}+ x*y
B(n)=b(old) +y
The change is weightsis Aw = x*y

w (n)= w (0) + Aw

*The steps 2 to 4 are repeated for each input vector and output.

Example Of Hebbian Learning Rule

Let us implement logical AND function with bipolar inputs using
Hebbian Learning.

X1 and X2 are inputs, b is the bias taken as 1, the target value is the
output of logical AND operation over inputs.

Input Input Bias Target
X1 X2 b y

1 (High) 1 (High) 1 1 (High)
1 (High) -1 (Low) 1 -1 (Low)
-1 (Low) 1 (High) 1 -1 (Low)
-1 (Low) -1 (Low) 1 -1 (Low)

#1) Initially, the weights are set to zero and bias is also set as zero.
wW,=w,=b=0

#2) First input vector is taken as [x1 x2 b] =[1 1 1] and target value is 1.
The new weights will be:

W (new) = w (old) +x*y

Wl(n)=wl(o) +x1*y=0+1%*1=1

W2 (n)=w2(0) +x2*y=0+1%*1=1

B(n)=b(o) +y=0+1=1

Thechange in weights is: Awl=x1 *y =1 Aw2=x2 *y =1Ab=y =1

#3) The above weights are the final new weights. When the second input is
passed, these become the initial weights.

#4) Take the second input = [1 -1 1]. The target is -1.
The weights vector is= [wlw2 b]=[11 1]
Thechange is weightsis: Awl=x1 *y =-1 Aw2=x2 *y=1 Ab=y=-1
The new weights willbewl (n) =wl+Awl =>1+(-1) =0
W2(n)=w2+Aw2 =>1+(1)=2
B(nN)=b+Ab =>1+(-1)=0
#5) Similarly, the other inputs and weights are calculated.

Weigh Bi New Weight
Inputs Bias Target Output eight 'as ew YWelghts

Changes Changes
X1 X2 b y Awl Aw?2 Ab W1 W2
1 1 1 1 1 1 1 1 1
1 -1 1 -1 -1 1 -1 0 2
-1 1 1 -1 1 -1 -1 1 1

Hebb Net for AND Function

FEW APPLICATION AREAS OF NEURAL

NETWORKS

* |nsurance

« Aerospace
« Automotive
Banking
« Credit Card Activity Checking
Defense
Electronics
Entertainment
Financial
Industrial
Insurance

« Manufacturing

« Medical

« Oiland Gas
* Robotics

« Speech

« Securities

« Telecommunications
« Transportation

