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UNIT-1 

Soft Computing 

Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is 
tolerant of imprecision, uncertainty, partial truth, and approximation. In effect, the role model 
for soft computing is the human mind.  

The guiding principle of soft computing is: “Exploit the tolerance for imprecision, 
uncertainty, partial truth, and approximation to achieve tractability, robustness and low 
solution cost.”  

The principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Neural Computing 
(NC), Evolutionary Computation (EC) Machine Learning (ML) and Probabilistic Reasoning 
(PR), chaos theory and parts of learning theory.  

Importance of Soft Computing 

The complementarity of FL, NC and PR has an important consequence: in many cases a 
problem can be solved most effectively by using FL, NC and PR in combination rather than 
exclusively. A striking example of a particularly effective combination is what has come to be 
known as "neurofuzzy systems." Such systems are becoming increasingly visible as consumer 
products ranging from air conditioners and washing machines to photocopiers and camcorders. 
Less visible but perhaps even more important are neurofuzzy systems in industrial applications. 
What is particularly significant is that in both consumer products and industrial systems, the 
employment of soft computing techniques leads to systems which have high MIQ (Machine 
Intelligence Quotient).  

Hard Computing 

Hard computing deals with precise models where accurate solutions are achieved quickly. Hard 
Computing is the ancient approach employed in computing that have an accurate analytical 
model. The outcome of hard computing approach is a warranted, settled and accurate result. It 
deals with binary and crisp logic that need the precise input. Hard computing isn’t capable of 
finding the solution of real world problems’ which are not well defined mathematically or if the 
inputs are not precise but have lot of dependency on environment.  
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Difference between Hard Computing and Soft Computing 

 

Main Computing Paradigms of Soft Computing: 

The main computing paradigms of soft computing are. 

1. Artificial Neural Network (ANN): ANNs are inspired from biological nervous system. 
They have the capability of learning and adaptability.   

2. Fuzzy Systems: This technique is inspired from human experience. In this approach 
knowledge representation is performed via Fuzzy “If-Then” rules. 

3. Genetic Algorithm: Genetic algorithm is a method for solving both constrained and 
unconstrained optimization problems that is based on natural selection, the process that drives 
biological evolution. 

Neural Networks 

A neural network is a processing device, whose design was inspired by the design and 
functioning of human brains and components thereof. The neural networks have the ability to 
learn by example which makes them very flexible and powerful. For neural networks, there is 
no need to understand the internal mechanisms of the task.  



   
 

 Page 3 
 

 “A neural network is a massively parallel distributed processor made up of simple processing 
units that has a natural propensity for storing experiential knowledge and making it available 
for use. It resembles the brain in two respects:  

1. Knowledge is acquired by the network from its environment through a learning process.  

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired 
knowledge.” 

The procedure used to perform the learning process is called a learning algorithm, the function 
of which is to modify the synaptic weights of the network in an orderly fashion to attain a 
desired design objective. 

A neural network derives its computing power through, first, its massively parallel distributed 
structure and, second, its ability to learn and therefore generalize. Generalization refers to the 
neural network’s production of reasonable outputs for inputs not encountered during training 
(learning). These two information processing capabilities make it possible for neural networks 
to find good approximate solutions to complex (large-scale) problems that are intractable. 

An artificial neural network (ANN) may be defined as an information processing model that is 
inspired by the way biological nervous systems, such as the brain, process information. This 
model tries to replicate only the most basic functions of brain. The key element of ANN is the 
novel structure of its information processing system. An ANN is composed of a large number of 
highly interconnected processing elements (neurons) working in unison to solve specific 
problems. 

CHARACTERISTICS OF NEURAL NETWORK 

(i) The NNs exhibit mapping capabilities, that is, they can map input patterns to their 
associated output patterns. 

(ii) The NNs learn by examples. Thus, NN architectures can be 'trained with known 
examples of a problem before they are tested for their 'inference capability on 
unknown instances of the problem. They can, therefore, identify new objects 
previously untrained. 

(iii) The NNs possess the capability to generalize. Thus, they can predict new outcomes 
from past trends. 

(iv) The NNs are robust systems and are fault tolerant. They can, therefore, recall full 
patterns from incomplete, partial or noisy patterns. 

(v) The NNs can process information in parallel, at high speed, and in a distributed 
manner. 
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HISTORY OF NEURAL NETWORK RESEARCH 

The pioneering work of McCulloch and Pitts (1943) was the foundation stone for the growth of 
NN architectures. In their paper, McCulloch and Pitts suggested the unification of 
neurophysiology with mathematical logic, which paved way for some significant results in NN 
research. Infact, the McCulloch-Pitts model even influenced Von Neumann to try new design 
technology in the construction of EDVAC (Electronic Discrete Variable Automatic Computer).  

The next significant development arose out of Hebb's book ‘The organization of behaviour'. In 
this, Hebb proposed a learning rule derived from a model based on synaptic connections 
between nerve cells responsible for biological associative memory. 

The Hebbian rule was later refined by Rosenblatt in 1958, in the Perceptron model (Rosenblatt, 
1958). However, a critical assessment of the Perceptron model by Minsky in 1969 (Minsky and 
Papert, 1969) stalled further research in NN. It was much later in the 1980s that there was a 
resurgence of interest in NN and many major contributions in the theory and application of NN 
were made. 

The Human Brain 

The human brain is one of the most complicated part. However, the concept of neurons as the 
fundamental constituent of the brain has made the study of its functioning comparatively easier. 
Figure 1 illustrates the physical structure of the human brain. 

 

Fig. 1 Physical structure of the human brain-cross-sectional view 



   
 

 Page 5 
 

Brain contains about 1010 basic units called neurons. Each neuron in turn, is connected to about 
104 other neurons. A neuron is a small cell that receives electro-chemical signals from its 
various sources and in turn responds by transmitting electrical impulses to other neurons. An 
average brain weighs about 1.5 kg and an average neuron has a weight of 1.5 x 10-9 gms. While 
some of the neurons perform input and output operations (referred to as afferent and efferent 
cells respectively), the remaining form a part of an interconnected network of neurons which are 
responsible for signal transformation and storage of information. However, despite their 
different activities, all neurons share common characteristics. 

 A neuron is composed of a nucleus-a cell body known as soma (refer Fig. 2).  

 Attached to the soma are long irregularly shaped filaments called dendrites. The dendrites 
behave as input channels, (i.e.) all inputs from other neurons arrive through the dendrites. 
Dendrites look like branches of a tree during winter.  

 Another type of link attached to the soma is the Axon. Unlike the Dendritic links, the 
axon is electrically active and serves as an output channel. Axons, which mainly appear 
on output cells are non-linear threshold devices which produce a voltage pulse called 
Action Potential or Spike that lasts for about a millisecond.  

 If the cumulative inputs received by the soma raise the internal electric potential of the 
cell known as Membrane Potential, then the neuron fires by propagating the action 
potential down the axon to excite or inhibit other neurons.  

 The axon terminates in a specialized contact called synapse or synaptic junction that 
connects the axon with the dendritic links of another neuron. The synaptic junction, 
which is a very minute gap at the end of the dendritic link contains a neuro-transmitter 
fluid. It is this fluid which is responsible for accelerating or retarding the electric charges 
to the soma. Each dendritic link can have many synapses acting on it thus bringing about 
massive interconnectivity. 

 

Fig. 2 Structure of a neuron 
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MODEL OF AN ARTIFICIAL NEURON 

The human brain no doubt is a highly complex structure viewed as a massive, highly 
interconnected network of simple processing elements called neurons. However, the behaviour 
of a neuron can be captured by a simple model as shown in Fig. 3. Every component of the 
model bears a direct analogy to the actual constituents of a biological neuron and hence is 
termed as artificial neuron. It is this model which forms the basis of Artificial Neural Networks. 

 

Fig. 3 

 Here, x1, x2, x3,….., xn are the n inputs to the artificial neuron. w1, w2, ….., wn are the 
weights attached to the input links. 

 Recollect that a biological neuron receives all inputs through the dendrites, sums them 
and produces an output if the sum is greater than a threshold value. The input signals are 
passed on to the cell body through the synapse which may accelerate or retard an arriving 
signal. 

 It is this acceleration or retardation of the input signals that is modeled by the weights. 
An effective synapse which transmits a stronger signal will have a correspondingly larger 
weight while a weak synapse will have smaller weights. Thus, weights here are 
multiplicative factors of the inputs to account for the strength of the synapse. Hence, the 
total input I received by the soma of the artificial neuron is 

                               ……………………(1.1) 

 To generate the final output y, the sum is passed on to an activation function ϕ, which 
provides the output. 
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                                                i.e.  y = ϕ (I)                   ……………………… (1.2) 

Necessity of Activation Function: 

 It helps to calculate exact output of artificial neural network 

 It introduces non-linear properties to our network. 

 A very commonly used Activation function is the Threshold function. In this, the sum is 
compared with a threshold value θ. If the value of I is greater than θ, then the output is 1 
else it is 0. 

                                                 ………………….. (1.3) 

Where, ϕ is step function known as Heaviside function and is such that 

                                                      Φ (I) =   1,  I ≥   θ 

                                                                     0,  I < θ    ……………………. (1.4)                             

Fig. 4 illustrates the Threshold function. This is convenient in the sense that the output signal is 
either 1 or 0 resulting in the neuron being on or off. 

 

 

Fig. 4 Thresholding function 

Binary Threshold function 

The threshold activation function is  

𝑓(𝐼) = ൜
1 𝑖𝑓 𝐼 ≥  𝜃
0 𝑖𝑓 𝐼 < 𝜃
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In binary threshold function, the value of θ is 0. So the binary threshold activation here is  

𝑓(𝐼) = ൜
1 𝑖𝑓 𝐼 ≥  0
0 𝑖𝑓 𝐼 < 0

 

 

Bipolar Threshold function 

In case of bipolar, 1 is replaced by +1 and 0 is replaced by -1. +1 represents true and -1 
represents false. So the bipolar threshold activation function is  

𝑓(𝐼) = ൜
1 𝑖𝑓 𝐼 ≥  0

−1 𝑖𝑓 𝐼 < 0
 

Signum Function 

Also known as the Quantizer function, the function ϕ is defined as 

                                                            ……………………… (1.5) 

 

Fig. 5 Signum function 

Sigmoidal funtion 

This function is a continuous function that varies gradually between the asymptotic values 0 and 
1 or -1 and +1 and is given by 

                           ……….............(1.6) 
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Where, α is the slope parameter, which adjusts the abruptness of the function as it 
changes between the two asymptotic values. Sigmoidal functions are differentiable, which 
is an important feature of NN theory. Figure 6 illustrates the sigmoidal function. 

 

Fig. 6 Sigmoidal Function 

Hyperbolic tangent function 

The function is given by  

                                         Φ(I) = tanh (I)  ……………………(1.7) 

and can produce both positive and negative output values. 

 

Problems on Basic Neuron Model and Activation function: 

Q1. For the network shown in Figure, calculate the net input to the output neuron. 

 

 

 

 

 

The given neural net consists of three input neurons and one output neuron. The inputs and 
weights are: 

[x1, x2, x3] = [0.3, 0.5, 0.6] 

[w1, w2, w3] = [0.2, 0.1, -0.3] 

X1 

X2 

X3 

Y 

0.2 

0.1 

-0.3 

0.3 

0.5 

0.6 
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The net input Yin at neuron Y can be calculated as: 

Yin = w1x1 + w2x2 + w3x3 

Yin = 0.3*0.2 + 0.5*0.1 + 0.6*(-0.3) = -0.07 

Q2. For the network shown in Figure, calculate the net input to the output neuron. 

  

 

 

 

Here inputs are [x1, x2] = [0.2, 0.6], weights are [w1, w2] = [0.3, 0.7] and bias is b=0.45 

The net input Yin at neuron Y can be calculated as: Yin = w1x1 + w2x2 + b 

Yin = 0.2*0.3 + 0.6*0.7 + 0.45 = 0.93 

The net input is neuron Y is 0.93. 

Q3. For the network shown in Figure, calculate the output of the neuron Y using activation function as  

(i) Binary threshold function 
(ii) Bipolar threshold function 
(iii) Binary sigmoidal function 

 

 

 

 

 

The given network has three input neurons with bias and one output neuron. These form a 
single-layer network. The inputs are given as [x1, x2, x3] = [0.8, 0.6, 0.4] and the weights [w1, 
w2, w3] = [0.1, 0.3, -0.2] with bias=0.35 

The net input to the output neuron is  

X1 

X2 Y 

0.3 

0.7 

0.2 

0.6 
y 

0.45 

1 

X1 

X2 

X3 

Y 

0.1 

0.3 

-0.2 

0.8 

0.6 

0.4 

1 

0.35 

y 
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𝑌 =  𝑤𝑥



ୀଵ

 

So here Yin = w1x1 + w2x2 + w3x3 + b 

Yin = 0.8*0.1 + 0.6*0.3 + 0.4*(-0.2) + 0.35 = 0.53 

(i) Using Binary Threshold function 

The threshold activation function is  

𝑓(𝑦) = ൜
1 𝑖𝑓 𝑦 ≥ 𝜃
0 𝑖𝑓 𝑦 < 𝜃

 

In binary threshold function, the value of θ is 0. So the binary threshold activation 
here is  

𝑓(𝑦) = ൜
1 𝑖𝑓 𝑦 ≥ 0
0 𝑖𝑓 𝑦 < 0

 

Here Yin is 0.53, that is greater than 0, so the output Y here is 1. 
 

(ii) Using Bipolar Threshold function 
In case of bipolar, 1 is replaced by +1 and 0 is replaced by -1. +1 represents true and -
1 represents false. So the bipolar threshold activation function is  

𝑓(𝑦) = ൜
1 𝑖𝑓 𝑦 ≥ 0

−1 𝑖𝑓 𝑦 < 0
 

Here Yin is 0.53 that is greater than 0, so the output Y here is + 1. 
 

(iii) Using Binary Sigmoidal function 
The binary sigmoidal activation function is: 

𝑌 = 𝑓(𝑌) =  
1

1 + 𝑒ି
 

 

𝑌 =  
1

1 + 𝑒ି.ହଷ
 

So the output Y = 0.625 
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NEURAL NETWORK ARCHITECTURE  

Generally, an ANN structure can be represented using a directed graph. A graph G is an ordered 
2-tuple (V, E) consisting of a set V of vertices and a set E of edges. When each edge is assigned 
an orientation, the graph is directed and is called a directed graph or a digraph. Figure 7 
illustrates a digraph. Digraphs assume significance in Neural Network theory since signals in 
NN systems are restricted to flow in specific directions. 

The vertices of the graph may represent neurons (input/output) and the edges, the synaptic links. 
The edges are labelled by the weights attached to the synaptic links. 

 

Fig. 7 An example digraph 

There are several classes of NN, classified according to their learning mechanisms. However, 
there are three fundamentally different classes of networks based on architecture. All the three 
classes employ the digraph structure for their representation. 

1. SINGLE LAYER FEED FORWARD NETWORK 

This type or network comprises of two layers, namely the input layer and the output layer. The 
input layer neurons receive the input signals and the output layer neurons computes the output 
signals. The synaptic links carrying the weights connect every input neuron to the output neuron 
but not vice-versa. Such a network is said to be feed forward in type or acyclic n nature. 
Despite, the two layers, the network is termed single layer since it is the output layer, 
alone which performs computation. The input layer merely transmits the signals to the output 
layer. Hence, the name single layer feed forward network. Figure 8 illustrates an example 
network. 
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Fig. 8 Single layer feedforward network 

2. MULTILAYER FEED FORWARD NETWORK 

This network, as its name indicates is made up of multiple layers. Thus, architectures of this 
class besides possessing an input and an output layer also have one or more intermediary layers 
called hidden layers. The computational units of the hidden layer are known as the hidden 
neurons or hidden units. The hidden layer aids in performing useful intermediary computations 
before directing the input to the output layer. The input layer neurons are linked to the hidden 
layer neurons and the weights on these links are referred to as input-hidden layer weights. 
Again, the hidden layer neurons are linked to the output layer neurons and the corresponding 
weights are referred to as hidden-output layer weights. Figure 9 illustrates a multilayer feed 
forward network with a configuration 1-m- n. 

 

Fig. 9 A multilayer feed forward network (l- m- n configuration) 

3. RECURRENT NETWORKS 

These networks differ from feed forward network architectures in the sense that there is atleast 
one feedback loop. Thus, in these networks, for example, there could exist one layer with 
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feedback connections as shown in Fig. 10. There could also be neurons with self-feedback 
links, i.e. the output of a neuron is fed back into itself as input. 

 

Fig. 10 A recurrent neural network 

Learning Processes 

We may categorize the learning processes of a neuron into following categories: 

1. Supervised learning 
2. Unsupervised learning 
3. Reinforced learning 

 
1. Supervised learning.  

 

In conceptual terms, we may think of the teacher as having knowledge of the environment, with 
that knowledge being represented by a set of input–output examples. The environment is, 
however, unknown to the neural network. Suppose now that the teacher and the neural network 
are both exposed to a training vector (i.e., example) drawn from the same environment. By 
virtue of built-in knowledge, the teacher is able to provide the neural network with a desired 
response for that training vector. Indeed, the desired response represents the “optimum” action 
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to be performed by the neural network. The network parameters (weights) are adjusted under 
the combined influence of the training vector and the error signal. The error signal is defined as 
the difference between the desired response and the actual response of the network. This 
adjustment is carried out iteratively in a step-by-step fashion with the aim of eventually making 
the neural network emulate the teacher; the emulation is presumed to be optimum in some 
statistical sense. In this way, knowledge of the environment available to the teacher is 
transferred to the neural network through training and stored in the form of “fixed” synaptic 
weights, representing long-term memory. When this condition is reached, we may then dispense 
with the teacher and let the neural network deal with the environment completely by itself. 

2. Unsupervised Learning 
In unsupervised, or self-organized, learning, there is no external teacher or critic to 
oversee the learning process. 

 
Rather, provision is made for a task-independent measure of the quality of representation 
that the network is required to learn, and the free parameters of the network are optimized 
with respect to that measure. For a specific task-independent measure, once the network 
has become tuned to the statistical regularities of the input data, the network develops the 
ability to form internal representations for encoding features of the input and thereby to 
create new classes automatically. 
 

3. Reinforced learning 
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In this method, a teacher though available, does not present the expected answer but only 
indicates if the computed output is correct or incorrect. The information provided helps the 
network in its learning process. A reward is given for a correct answer computed and a penalty 
for a wrong answer. But, reinforced learning is not one of the popular forms of learning. 

 

APPLICATIONS OF NEURAL NETWORK 

Neural networks have been successfully applied for the solution of a variety of problem 
however, some of the common application domains have been listed below: 

1. Pattern recognition (PR)/image processing 

Neural networks have shown remarkable progress in the recognition of visual images, 
handwritten characters, printed characters, speech and other PR based tasks. 

2. Optimization/constraint satisfaction 

This comprises problems which need to satisfy constraints and obtain optimal solutions. 
Examples of such problems include manufacturing scheduling, finding the shortest possible tour 
given a set of cities, etc. Several problems of this nature arising out of industrial and 
manufacturing fields have found acceptable solutions using NNs. 

3. Forecasting and risk assessment 

Neural networks have exhibited the capability to predict situations from past trends. They have 
therefore, found ample applications in areas such as meteorology, stock market, banking, and 
econometrics with high success rates. 

McCulloch-Pitts Neuron 

The McCulloch-Pitts neuron was the earliest neural network discovered in 1943. It is usually 
called as M-P neuron. The M-P neurons are connected by directed weighted paths. It should be 
noted that the activation of an M-P neuron is binary, that is, at any time step the neuron may fire 
or may not fire. The weights associated with the communication links may be excitatory 
(weight is positive) or inhibitory (weight is negative).  

The threshold plays a major role in M-P neuron: There is a fixed threshold for each neuron, and 
if the net input to the neuron is greater than the threshold then the neuron fires. 
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A simple M-P neuron is shown in above figure. The M-P neuron has both excitatory and 
inhibitory connections. It is excitatory with weight (w > 0) or inhibitory with weight –p (p < 0). 
In Figure, inputs from X1 to X3 possess excitatory weighted connections and inputs from X4 to 
X5 possess inhibitory weighted interconnections. Since the firing of the output neuron is based 
upon the threshold θ, the activation function here is defined as 

𝑓(𝑦) = ൜
1 𝑖𝑓 𝑦 ≥ 𝜃
0 𝑖𝑓 𝑦 < 𝜃

 

Here yin is the net input at neuron y. If the net input is greater than or equal to the 
threshold then the neuron fires else the neuron will not fire. 

The M-P neuron has no particular training algorithm. An analysis has to be performed to 
determine the values of the weights and the threshold. Here the weights of the neuron are set 
along with the threshold to make the neuron perform a simple logic function.  

 In M-P Neuron model, our basic assumptions are: 

 Threshold activation function will be used 

 Weights can be selected as excitatory (+ve) or inhibitory (-ve), i.e. +1 or -1. 

 Using the given combination of weights, we try to set the threshold for solving the 
problem. 

X1 

X2 

X3 

X4
+1

Y 

X5 

w 

w 

w 

-p 

-p 
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Q4. Implement AND function using McCulloch-Pitts neuron model. 

The truth table for AND function is 

X1 X2 Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

The network architecture is: 

 

  

 

 

 

With these assumed weights, the net input is calculated for four inputs:  

Initially we assume here that w1=1 and w2=1 

 

(0, 0) Yin=w1*x1+w2*x2 Yin= 1*0 + 1*0 = 0 

(0, 1) Yin=w1*x1+w2*x2 Yin= 1*0 + 1*1 = 1 

(1, 0) 

(1, 1) 

Yin=w1*x1+w2*x2 

Yin=w1*x1+w2*x2 

 

Yin= 1*1 + 1*0 = 1 

Yin= 1*1 + 1*1 = 2 

Based on this net input for all inputs, we will set the threshold so that output from neuron Y will 
match the desired output for AND function. 

X1 

X2 

Y 
w1

w2 

x1 

x2 
y 
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For example here in AND function, the output is high only for input (1, 1) otherwise the output 
is 0. So we will adjust the threshold in such a way that this net input will be converted into 
desired output. Here we can set the threshold value θ = 2.  

So where the net input is greater than or equal to 2, the neuron will output 1 otherwise neuron 
will give the output 0. 

 

(0, 0) Yin=w1*x1+w2*x2 Yin= 1*0 + 1*0 = 0                Output 0 

(0, 1) Yin=w1*x1+w2*x2 Yin= 1*0 + 1*1 = 1                Output 0 

(1, 0) 

(1, 1) 

Yin=w1*x1+w2*x2 

Yin=w1*x1+w2*x2 

 

Yin= 1*1 + 1*0 = 1          θ = 2     Output 0 

Yin= 1*1 + 1*1 = 2                       Output 1 

After using the weights as (1, 1) and with threshold θ≥2, the neuron Y provides the output as 
desired by the AND function. The network for AND function is: 

  

 

 

 

If we are able to set the threshold with these assumed weights, then we can assume another pair 
of weights such as (1, -1), (-1, 1) and (-1, -1). 

 

 

 

 

 

 

X1 

X2 

Y 

w1=1 

w2=1 

x1 

x2 
y 

θ≥2 
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Q5. Implement OR function using McCulloch-Pitts neuron model. 

The truth table for OR function is 

X1 X2 Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

First, assume the weights be w1 = 1 and w2 = 1. The network architecture is: 

 

  

 

 

 

With these assumed weights, the net input is calculated for four inputs:  

Initially we assume here that w1=1 and w2=1 

(0, 0) Yin=w1*x1+w2*x2 Yin= 1*0 + 1*0 = 0 

(0, 1) Yin=w1*x1+w2*x2 Yin= 1*0 + 1*1 = 1 

(1, 0) Yin=w1*x1+w2*x2 Yin= 1*1 + 1*0 = 1 

(1, 1) Yin=w1*x1+w2*x2 Yin= 1*1 + 1*1 = 2 

Here in OR function, the output is 1 for all pair of inputs except the pair (0, 0). So we will 
adjust the threshold in such a way that this net input will be converted into desired 
output. Here we can set the threshold value θ = 1.  

X1 

X2 

Y 
w1

w2 

x1 

x2 
y 
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So where the net input is greater than or equal to 1, the neuron will output 1 otherwise neuron 
will give the output 0. 

(0,0) Yin=w1*x1+w2*x2 Yin= 1*0 + 1*0 = 0 

θ = 1 

Output 0 

(0,1) Yin=w1*x1+w2*x2 Yin= 1*0 + 1*1 = 1 Output 1 

(1,0) Yin=w1*x1+w2*x2 Yin= 1*1 + 1*0 = 1 Output 1 

(1,1) Yin=w1*x1+w2*x2 Yin= 1*1 + 1*1 = 2 Output 1 

 

After using the weights as (1, 1) and with threshold θ≥1, the neuron Y provides the output as 
desired by the OR function. 

The network for OR function is: 

  

 

 

 

Rosenblatt’s Perceptron 

The perceptron is the simplest form of a neural network used for the classification of patterns 
said to be linearly separable (i.e., patterns that lie on opposite sides of a hyperplane). Basically, 
it consists of a single neuron with adjustable synaptic weights and bias. The algorithm used to 
adjust the free parameters of this neural network first appeared in a learning procedure 
developed by Rosenblatt (1958, 1962) for his perceptron brain model. 

Perceptron convergence theorem or  convergence rule states that if the patterns (vectors) 
used to train the perceptron are drawn from two linearly separable classes, then the perceptron 
algorithm converges and positions the decision surface in the form of a hyperplane between the 
two classes. The proof of convergence of the algorithm is known as the perceptron 
convergence theorem. 

Rosenblatt’s perceptron is built around a nonlinear neuron, namely, the McCulloch–Pitts model 
of a neuron. Such a neural model consists of a linear combiner followed by a hard limiter 

X1 

X2 

Y 

w1=1 

w2=1 

x1 

x2 
y 

θ≥1 
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(performing the threshold / signum function), as depicted in Figure. The summing node of the 
neural model computes a linear combination of the inputs applied to its synapses, as well as 
incorporates an externally applied bias. The resulting sum, that is, the induced local field, is 
applied to a hard limiter. Accordingly, the neuron produces an output equal to 1 if the hard 
limiter input is positive, and 0 or -1 if it is negative (0 for threshold and -1 for signum function).  

 

 

Fig. Signal flow graph of perceptron 

From the model, we find that the hard limiter input, or induced local field, of the neuron is: 
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This is illustrated in Fig. below for the case of two input variables x1 and x2, for which the 
decision boundary takes the form of a straight line. A point (x1, x2) that lies above the 
boundary line is assigned to class C1, and a point (x1, x2) that lies below the boundary line 

is assigned to class C2. 

 

The synaptic weights w1,w2, ...,wm of the perceptron can be adapted on an iteration by-iteration 
basis. For the adaptation, we may use an error-correction rule known as the 
perceptron convergence algorithm. The equivalent signal flow graph can also be represented as: 
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Problems for practice: 

1. Learn the truth table of AND Gate using perceptron. Assume initial weights as 
w

1
 = 0.9 and w

2
 = 0.9, Assume learning rate=0.5, bias = 0.5. 

2. Learn the truth table of OR Gate using perceptron. Assume initial weights as 
w

1
 = 0 and w

2
 = 0. Assume learning rate=0.5, bias = 0.5. 

 

ASSSOCIATIVE MEMORY 

Associative Memories, one of the major classes of neural networks, are faint imitations of the 
human brain's ability to associate patterns. An Associative Memory (AM) which belongs to the 
class of single layer feed forward or recurrent network architecture depending on its association 
capability, exhibits Hebbian learning. 

An associate memory is a storehouse of associated patterns which are encoded in some form. 
When the storehouse is submitted with a pattern, the associated pattern pair is recalled or 
output. The input pattern could be an exact replica of the stored pattern or a distorted or partial 
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representation of a stored pattern. Figure shown below illustrates the working of an associative 
memory. 

 

In the figure,  are associated pattern pairs. The associations 
represented using symbols are stored in the memory. When the memory is triggered for 
instance, with a  ∆ , the associated pattern is retrieved automatically. 

Hetero associative Memory 

 If the associated pattern pairs (x. y) are different and if the model recalls a ‘y’ given an 
‘x’ or vice versa, then it is termed as hetero associative memory.  

 It is useful for the association of patterns 

 Hetero associative correlation memories are known as hetero correlators. 

Auto associative Memory 

 If x and y refer to the same kind of pattern, then the model is termed as auto associative 
memory. 

 Auto associative memories are useful for image refinement, that is, given a distorted or a 
partial pattern, the whole pattern stored in its perfect form can be recalled. 

 Auto associative correlation memories are known as auto correlators. 
 
Figure shown below illustrates hetero associative and auto associative memories. 
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Additional Questions 

1. Differentiate between recurrent neural network and multilayer neural network 

               Recurrent neural network         Multilayer neural network 

 Data and calculations flow in backward 
direction, from the output to the input 
layer. 

Data and calculations flow in a single 
direction, from input data to the outputs. 

 It contains feedback links. It does not contain feedback links. 

 It is used for text data, speech data. It is used for image data, time series data. 

 
 

2. Differentiate between Artificial Neural Network (ANN) and Biological Neural 
Network (BNN). 

ANN BNN 

Processing speed is fast as compared to 
Biological Neural Network. They are slow in processing information. 

Allocation for Storage to a new process 
is strictly irreplaceable as the old 
location is saved for the previous 
process. 

Allocation for storage to a new process is 
easy as it is added just by adjusting the 
interconnection strengths. 

Processes operate in sequential mode. 
The process can operate in massive 
parallel operations. 

If any information gets corrupted in the 
memory it cannot be retrieved. 

Information is distributed into the 
network throughout into sub-nodes, even 
if it gets corrupted it can be retrieved. 

The activities are continuously 
monitored by a control unit. 

There is no control unit to monitor the 
information being processed into the 
network. 
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3. Differentiate between Supervised and Unsupervised Learning. 
 

SUPERVISED   
 

 Uses Known and Labeled Data as input 

UNSUPERVISED  
 
Uses Unknown Data as input 

 Very Complex Less Computational Complexity 

 Uses off-line analysis Uses Real Time Analysis of Data 

 Accurate and Reliable Results Moderate Accurate and Reliable Results 

 

4. Can single layer perceptron learn XOR Logic? 

The classes in XOR are not linearly separable. It will not be possible for you to draw a straight 
line to separate the points (0,0),(1,1) from the points (0,1),(1,0). Single layer perceptron can 
only learn linearly separable patterns.  

 

Therefore, a single layer perceptron does not have the ability to implement XOR. This gave rise 
to the need for and the invention of multilayer networks and perceptron. 

 


