
UNIT 2

Decision making and Loops

Q1. What is decision making statements? Write down the different decision

making statements.

Ans.

Python provides various types of conditional statements:

Statement Description

if Statements It consists of a Boolean expression which results are either

TRUE or FALSE, followed by one or more statements.

if else Statements It also contains a Boolean expression. The if statement is

followed by an optional else statement & if the expression

results in FALSE, then else statement gets executed.

Nested Statements You can use one if or else statement inside another if or else

if statements(s)

Python If-Else Statement

The if statement alone tells us that if a condition is true it will execute a block of

statements and if the condition is false it won’t. But if we want to do something

else if the condition is false, we can use the else statement with if statement to

execute a block of code when the if condition is false.

Syntax:

if (condition):

 # Executes this block if

 # condition is true

else:

 # Executes this block if

 # condition is false

Python if-elif-else Ladder

Here, a user can decide among multiple options. The if statements are executed from

the top down. As soon as one of the conditions controlling the if is true, the statement

associated with that if is executed, and the rest of the ladder is bypassed. If none of the

conditions is true, then the final else statement will be executed.

Syntax:

if (condition):

 statement

elif (condition):

 statement

.

.

else:

 statement

Flowchart of Python if-elif-else ladder

Q2. Program to check whether a number is positive or negative.

Ans:

n=int(input("Enter number: "))

if(n>0):

 print("Number is positive")

else:

 print("Number is negative")

using Shift operator

if(n&1==0):

 print(“even”)

else:

 print(“odd”)

Q3. Program to take in the marks of 5 subjects and display the grade.

Ans:

sub1=int(input("Enter marks of the first subject: "))

sub2=int(input("Enter marks of the second subject: "))

sub3=int(input("Enter marks of the third subject: "))

sub4=int(input("Enter marks of the fourth subject: "))

sub5=int(input("Enter marks of the fifth subject: "))

avg=(sub1+sub2+sub3+sub4+sub4)/5

if(avg>=90):

 print("Grade: A")

elif(avg>=80&avg<90):

 print("Grade: B")

elif(avg>=70&avg<80):

 print("Grade: C")

elif(avg>=60&avg<70):

 print("Grade: D")

else:

 print("Grade: F")

Q4. Program to check whether a given year is a leap year or not.

Ans:

year=int(input("Enter year to be checked:"))

if(year%4==0 and year%100!=0 or year%400==0):

 print("The year is a leap year!)

else:

 print("The year isn't a leap year!)

Q Program to check whether number is positive or negative.

n=int(input("Enter number: "))

if(n>>31==0):

 print(“positive”)

else:

 print(“negative”)

Loops in python

Generally Statements are executed sequentially, but there sometimes occur such cases

where programmers need to execute a block of code several times. The control structures of

programming languages allow us to execute a statement or block of statements repeatedly.

 Loops are a sequence of instructions that does a specific set of instructions or tasks based

on some conditions and continue the tasks until it reaches certain conditions.

Following diagram illustrates a loop statement .

Python language provides the different types of loop –

Loop Type Description

While Loop Repeats a statement or group of
statements while a given condition is true.
It tests the condition before executing the
loop body.

for Loop for loop is used for iterating over a
sequence (that is either a list, a tuple, a
dictionary, a set, or a string).

Nested loop You can create one or more loops inside
any other while or , for loop

While Loop in Python-

In python, a while loop is used to execute a block of statements repeatedly until a

given condition is satisfied. And when the condition becomes false, the line

immediately after the loop in the program is executed.

Syntax:
while expression:

 statement(s)

Statements may be a single or a block of statements with same indent .

All the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python

uses indentation as its method of grouping statements.

Flowchart depicting while loop -

Example of Python While Loop

Let’s see a simple example of while loop in Python.

Python program to illustrate while loop
count = 0
while (count < 3):
 count = count + 1
 print("Hello")

Output –

Hello

Hello

Hello

● Using else statement with While Loop in Python

The else clause is only executed when your while condition becomes false. If you

break out of the loop, or if an exception is raised, it won’t be executed.

Syntax of While Loop with else statement:
while condition:

 # execute these statements

else:

 # execute these statements

Examples of While Loop with else statement

count = 0
while (count < 3):
 count = count + 1
 print("Hello Geek")
else:
 print("In Else Block")

Output
Hello Geek

Hello Geek

Hello Geek

In Else Block

For Loop in Python

The for loop has the ability to iterate over the items of any
sequence, such as a list or a string.

Syntax:
for iterator_var in sequence:

 statements(s)

Example –

s = "apple"
for i in s:
 print(i)

Output –
a
p

p
l
e

The range() Function

To loop through a set of code a specified number of times, we can use

the range() function,

● The range() function returns a sequence of numbers, starting from 0

by default, and increments by 1 (by default), and ends at a specified

number.

● The range() function defaults to 0 as a starting value, however it is

possible to specify the starting value by adding a parameter:

● The range() function defaults to increment the sequence by 1, however

it is possible to specify the increment value by adding a third

parameter:

Example-

for x in range(6):
 print(x)

Example-

for x in range(2, 6):
 print(x)

Example-

for x in range(2, 30, 3):
 print(x)

Example with List, Tuple, string, and dictionary iteration using For Loops

in Python

We can use for loop to iterate lists, tuples, strings and dictionaries in Python.

1. Example with List

languages = ["C", "JAVA", "PYTHON"]
for x in languages:
 print(x)

2. Example with tuple

thistuple = ("apple", "banana", "cherry")

for x in thistuple:

 print(x)

3. Example with dict

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

for x in thisdict:

 print(x)

4. Example with string

country=”INDIA”

for i in country:

 print(i)

Output-

C

JAVA

PYTHON

apple

banana

cherry

brand

model

year

I

N

D

I

A

Using else statement with for loop in Python

We can also combine else statement with for loop like in while loop. If else statement

is used with for loop , then else statement will executed when the loop has finished

iterating the given sequence .

Example-

languages = ["C", "JAVA", "PYTHON"]
for x in range(len(languages)):

 print(languages[x])
else:

 print(“Inside else block”)

Nested loop in python-

Python programming language allows to use one loop inside another loop.

Syntax for for loop :

for iterator_var in sequence:
 for iterator_var in sequence:

 statements(s)

 statements(s)

Syntax for while loop:

while expression:

 while expression:

 statement(s)

 statement(s)

● WAP to print the given sequence -

 A A A

 B B

 C

C

JAVA

PYTHON

Inside else block

for x in range(2):

 for y in range(3):

 print(x,y)

x = [1, 2]
y = [4, 5]

i = 0
while i < len(x) :

 j = 0
 while j < len(y) :
 print(x[i] , y[j])
 j = j + 1
 i = i + 1

ANS -

 n=3

for i in range(n,0,-1):

 for j in range(0,i,1):

 print(chr(65+n-i),end=" ")

 print()

Loop Control Statements-

Loop control statements change execution from their normal sequence. When

execution leaves a scope, all automatic objects that were created in that scope

are destroyed. Python supports the following control statements.

Control Statement Description
Break statement Terminates the loop statement and transfers

execution to the statement immediately

following the loop .

Continue statement Causes the loop to skip the remainder of its

body & immediately retest its condition

prior to reiterating.

Pass statement Used when a statement is required

syntactically but you don’t want any

command or code to execute

Break statement –

● break statement in Python is used to bring the control out of the loop when

some external condition is triggered.

● break statement is put inside the loop body (generally after if condition). It

terminates the current loop, i.e., the loop in which it appears, and resumes

execution at the next statement immediately after the end of that loop.

● If the break statement is inside a nested loop, the break will terminate the

innermost loop.

Example-

s = 'programming' # example1

for letter in s:
 print(letter)
 if letter == 'o' or letter == 'm':
 break
print("Out of for loop")

 var =10

while(var>0):

 print(var)

 var=var-1

 if var ==5:

 break

print(“out of while loop)

p

r

out of for loop

10

9

8

7

6

Out of while loop

Continue Statement

Continue Statement is a loop control

statement that forces to execute the next

iteration of the loop while skipping the rest of

the code inside the loop for current iteration

only .

The syntax for continue statement is :

Example :

1. for var in "PYTHON":

if var == "Y":

 continue

 print(var)

2. i = 0

 while i < 8:

Continue

P

T

H

O
N

0

1

2

3

4

6

7

 if i == 5:

 i += 1

 continue

 print(i)

 i += 1

FlowChart

Pass Statement

● It is used when a statement is required

syntactically but you don't want any command or

code to execute .

● Pass is also used for empty control statements,

functions and classes.

Example -

for num in range(1,10):

 if num%2 != 0:

 pass

 else:

 print(num)

Note- Empty code is not allowed in loops , functions , if statements

, class definitions or in function definitions .

a = 33

b = 22

if b > a :

Output - raise an error because we cannot leave if statement empty .

a = 33

b = 22

if b > a :

 Pass.

Output - no error

2

4

6

8

Difference between Pass and

Comments

Pass Comments
Pass statement
allow program to
execute , nothing
happens but you
avoid getting an
error when empty
code is not allowed
.

Comments are used
to enhance the
readability of the
code.

Python interpreter
does not ignored
the pass statement
during the
execution of the

Python interpreter
ignored all the
comments during
the execution of the
program.

program

Difference Between Break & Continue Statement

The continue Statement The break Statement

The continue statement is used to skip an iteration of a for

loop or a while loop in Python.

The break statement is used to terminate the

execution of a for loop or a while loop in

Python.

The continue statement can lead to an infinite loop when

using a while loop if the statement to change the loop

variable is written after the continue statement.

The break statement never causes an infinite

loop.

We cannot use the continue statement outside a for loop or a

while loop.

We cannot use the break statement outside a

for loop or a while loop.

The continue statement can be executed multiple times in a

for loop or while loop in Python.

The break statement can be executed only once

inside a loop. After this, the execution of the

loop will be terminated.

	Python If-Else Statement
	Python if-elif-else Ladder
	Flowchart of Python if-elif-else ladder
	Example of Python While Loop
	● Using else statement with While Loop in Python
	Examples of While Loop with else statement

	For Loop in Python
	Example with List, Tuple, string, and dictionary iteration using For Loops in Python
	Using else statement with for loop in Python

