
 
Kernel I/O Subsystem 

Unit – V 

Kernels provide many services related to I/O. Several services-scheduling, buffering, caching, 
spooling, device reservation, and error handling-are provided by the kernel's I/O subsystem and 
build on the hardware and device driver infrastructure. 

I/O Scheduling 
To schedule a set of I/O requests means to determine a good order in which to execute them. The 
order in which applications issue system calls rarely is the best choice. Scheduling can improve 
overall system performance, can share device access fairly among processes, and can reduce the 
average waiting time for I/O to complete. 
Operating-system developers implement scheduling by maintaining a queue of requests for each 
device. When an application issues a blocking I/O system call, the request is placed on the queue 
for that device. The I/O scheduler rearranges the order of the queue to improve the overall system 
efficiency and the average response time experienced by applications. The operating system may 
also try to be fair, so that no one application receives especially poor service, or it may give 
priority service for delay-sensitive requests. For instance, requests from the virtual-memory 
subsystem may take priority over application requests. 

Buffering 
A buffer is a memory area that stores data while they are transferred between two devices or 
between a device and an application. Buffering is done for three reasons. 
One reason is to cope with a speed mismatch between the producer and consumer of a data 
stream. 
Suppose, for example, that a file is being received via modem for storage on the hard disk. The 
modem is about a thousand times slower than the hard disk. So a buffer is created in main 
memory to accumulate the bytes received from the modem. When an entire buffer of data has 
arrived, the buffer can be written to disk in a single operation. Since the disk write is not 
instantaneous and the modem still needs a place to store additional incoming data, two buffers 
are used. After the modem fills the first buffer, the disk write is requested. The modem then starts 
to fill the second buffer while the first buffer is written to disk. By the time the modem has filled 
the second buffer, the disk write from the first one should have completed, so the modem can 
switch back to the first buffer while the disk writes the second one. This double buffering 
decouples the producer of data from the consumer, thus relaxing timing requirements between 
them. 
A second use of buffering is to adapt between devices that have different data-transfer 
sizes. 
Such disparities are especially common in computer networking, where buffers are used widely 
for fragmentation and reassembly of messages. At the sending side, a large message is 
fragmented into small network packets. The packets are sent over the network, and the receiving 
side places them in a reassembly buffer to form an image of the source data. 
A third use of buffering is to support copy semantics for application I/O. 
An example will clarify the meaning of "copy semantics." Suppose that an application has a 
buffer of data that it wishes to write to disk. It calls the write (1 system call, providing a pointer 
to the buffer and an integer specifying the number of bytes to write. After the system call returns, 
what happens if the application changes the contents of the buffer? With copy semantics, the 
version of the data written to disk is guaranteed to be the version at the time of the application 



 

 

 

system call, independent of any subsequent changes in the application's buffer. A simple way that 
the operating system can guarantee copy semantics is for the write (1 system call to copy the 
application data into a kernel buffer before returning control to the application. The disk write is 
performed from the kernel buffer, so that subsequent changes to the application buffer have no 
effect. 
Data space is common in operating systems, despite the overhead that this operation introduces, 
because of the clean semantics. The same effect can be obtained more efficiently by clever use of 
virtual-memory mapping and copy-on-write page protection. 

 
Caching 
A cache is a region of fast memory that holds copies of data. Access to the cached copy is more 
efficient than access to the original. For instance, the instructions of the currently running process 
are stored on disk, cached in physical memory, and copied again in the CPU's secondary and 
primary caches. The difference between a buffer and a cache is that a buffer may hold the only 
existing copy of a data item, whereas a cache, by definition, just holds a copy on faster storage of 
an item that resides elsewhere. 

Spooling and Device Reservation 
A spool is a buffer that holds output for a device, such as a printer, that cannot accept interleaved 
data streams. Although a printer can serve only one job at a time, several applications may wish 
to print their output concurrently, without having their output mixed together. The operating 
system solves this problem by intercepting all output to the printer. Each application's output is 
spooled to a separate disk file. When an application finishes printing, the spooling system queues 
the corresponding spool file for output to the printer. 
The spooling system copies the queued spool files to the printer one at a time. In some operating 
systems, spooling is managed by a system daemon process. Some devices, such as tape drives 
and printers, cannot usefully multiplex the I/O requests of multiple concurrent applications. 
Spooling is one way that operating systems can coordinate concurrent output. 

Error Handling 
An operating system that uses protected memory can guard against many kinds of hardware and 
application errors, so that a complete system failure is not the usual result of each minor 
mechanical glitch. Devices and I/O transfers can fail in many ways, either for transient reasons, 
such as a network becoming overloaded, or for "permanent" reasons, such as a disk controller 
becoming defective. Operating systems can often compensate effectively for transient failures. 
For instance, a disk read0 failure results in a read0 retry, and a network send 0 error results in a 
resend 0, if the protocol so specifies. Unfortunately, if an important component experiences a 
permanent failure, the operating system is unlikely to recover. 



 

 

 

Disk Scheduling 
One of the responsibilities of the operating system is to use the hardware efficiently. For the disk 
drives, meeting this responsibility entails having a fast access time and disk bandwidth. The 
access time has two major components. The seek time is the time for the disk arm to move the 
heads to the cylinder containing the desired sector. The rotational latency is the additional time 
waiting for the disk to rotate the desired sector to the disk head. The disk bandwidth is the total 
number of bytes transferred, divided by the total time between the first request for service and the 
completion of the last transfer. Both the access time and the bandwidth can improve by 
scheduling the servicing of disk I/O requests in a good order. 

 
If the desired disk drive and controller are available, the request can be serviced immediately. If 
the drive or controller is busy, any new requests for service will be placed on the queue of 
pending requests for that drive. For a multiprogramming system with many processes, the disk 
queue may often have several pending requests. Thus, when one request is completed, the 
operating system chooses which pending request to service next. 

 
1. FCFS Scheduling 
The simplest form of disk scheduling is, the first-come, first-served (FCFS) algorithm. This 
algorithm is intrinsically fair, but it generally does not provide the fastest service. 
Consider, for example, a disk queue with requests for I/O to blocks on cylinders: 

 
98, 183, 37, 122, 14, 124, 65, 67 

in that order. We are having a request queue of 0 to 199, and the disk head is initially at cylinder 
53, 

 

 
If the disk head is initially at cylinder 53, it will first move from 53 to 98, then to 183, 37, 122, 
14, 124, 65, and finally to 67, for a total head movement of 640 cylinders. 
total head movement = (98-53)+ (183-98)+(183-37)+(122-37)+(122-14)+(124-14)+(124-65) + 

(67-65) = 640 cylinders. 



 

 

 

The wild swing from 122 to 14 and then back to 124 illustrates the problem with this schedule. If 
the requests for cylinders 37 and 14 could be serviced together, before or after the requests at 122 
and 124, the total head movement could be decreased substantially, and performance could be 
thereby improved. 

 
2. SSTF Scheduling 
It seems reasonable to service all the requests close to the current head position, before moving 
the head far away to service other requests. This assumption is the basis for the shortest-seek- 
time-first (SSTF) algorithm. The SSTF algorithm selects the request with the minimum seek 
time from the current head position. Since seek time increases with the number of cylinders 
traversed by the head, SSTF chooses the pending request closest to the current head position. 

 

 
For example request queue, the closest request to the initial head position (53) is at cylinder 65. 
Once we are at cylinder 65, the next closest request is at cylinder 67. From there, the request at 
cylinder 37 is closer than 98, so 37 is served next. Continuing, service the request at cylinder 14, 
then 98, 122, 124, and finally 183. This scheduling method results in a total head movement of 
only 236 cylinders-little more than one-third of the distance needed for FCFS scheduling of this 
request queue. 

 
total head movement = (53-65)+(65-67)+(67-37)+(37-14)+(98-14)+(122-98)+(124-122) 

+(183-124) = 236 cylinders. 

 
This algorithm gives a substantial improvement in performance. SSTF scheduling is essentially a 
form of shortest-job-first (SJF) scheduling, and, like SJF scheduling, it may cause starvation of 
some requests, that the requests may arrive at any time. Suppose that we have two requests in the 
queue, for cylinders 14 and 186, and while servicing the request from 14, a new request near 14 
arrives. This new request will be serviced next, making the request at 186 wait. While this 
request is being serviced, another request close to 14 could arrive. In theory, a continual stream 



 

 

 

of requests near one another could arrive, causing the request for cylinder 186 to wait 
indefinitely. This scenario becomes increasingly likely if the pending-request queue grows long. 
Although the SSTF algorithm is a substantial improvement over the FCFS algorithm, it is not 
optimal. In the example, we can do better by moving the head from 53 to 37, even though the 
latter is not closest, and then to 14, before turning around to service 65,67,98,122,124, and 183. 
This strategy reduces the total head movement to 208 cylinders. 

 
3. SCAN Scheduling 
In the SCAN algorithm, the disk arm starts at one end of the disk, and moves toward the other 
end, servicing requests as it reaches each cylinder, until it gets to the other end of the disk. At the 
other end, the direction of head movement is reversed, and servicing continues. The head 
continuously scans back and forth across the disk. 

 
Before applying SCAN to schedule the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 
67, we need to know the direction of head movement, in addition to the head's current position 
(53). If the disk arm is moving toward 0, the head will service 37 and then 14. At cylinder 0, the 
arm will reverse and will move toward the other end of the disk, servicing the requests at 65, 67, 
98, 122, 124, and 183. 

 

 
If a request arrives in the queue just in front of the head, it will be serviced almost immediately; 

a request arriving just behind the head will have to wait until the arm moves to the end of the 
disk, reverses direction, and comes back. 

 
The SCAN algorithm is sometimes called the elevator algorithm, since the disk arm behaves just 
like an elevator in a building, first servicing all the requests going up, and then reversing to 
service requests the other way. 
Assuming a uniform distribution of requests for cylinders, consider the density of requests when 
the head reaches one end and reverses direction. At this point, relatively few requests are 
immediately in front of the head, since these cylinders have recently been serviced. The heaviest 
density of requests is at the other end of the disk. These requests have also waited the longest. 



 

 

 

4. C-SCAN Scheduling 
Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide a more uniform 
wait time. Like SCAN, C-SCAN moves the head from one end of the disk to the other, servicing 
requests along the way. When the head reaches the other end, however, it immediately returns to 
the beginning of the disk, without servicing any requests on the return trip. The C-SCAN 
scheduling algorithm essentially treats the cylinders as a circular list that wraps around from the 
final cylinder to the first one. 

 

 
5. LOOK Scheduling 

 
The arm goes only as far as the final request in each direction. Then, it reverses direction 
immediately, without going all the way to the end of the disk. These versions of SCAN and C- 
SCAN are called LOOK and C-LOOK scheduling, because they look for a request before 
continuing to move in a given direction 

 



 

 

 

Selection of a Disk-Scheduling Algorithm 
 SSTF is common and has a natural appeal because it increases performance over FCFS. 

SCAN and C-SCAN perform better for systems that place a heavy load on the disk, because 
they are less likely to have a starvation problem. For any particular list of requests, we can 
define an optimal order of retrieval, but the computation needed to find an optimal schedule 
may not justify the savings over SSTF or SCAN. 

 With any scheduling algorithm, however, performance depends heavily on the number and 
types of requests. For instance, suppose that the queue usually has just one outstanding 
request. Then, all scheduling algorithms are forced to behave the same, because they have 
only one choice for where to move the disk head: They all behave like FCFS scheduling. 

 The requests for disk service can be greatly influenced by the file-allocation method. A 
program reading a contiguously allocated file will generate several requests that are close 
together on the disk, resulting in limited head movement. A linked or indexed file, on the 
other hand, may include blocks that are widely scattered on the disk, resulting in greater head 
movement. 

 
RAID Structure 

 
Disk drives have continued to get smaller and cheaper, so it is now economically feasible to 
attach a large number of disks to a computer system. Having a large number of disks in a system 
presents opportunities for improving the rate at which data can be read or written, if the disks are 
operated in parallel. Furthermore, this setup offers the potential for improving the reliability of 
data storage, because redundant information can be stored on multiple disks. Thus, failure of one 
disk does not lead to loss of data. A variety of disk-organization techniques, collectively called 
redundant arrays of inexpensive disks (RAID), are commonly used to address the performance 
and reliability issues. 

 
Mirroring provides high reliability, but it is expensive. Striping provides high data-transfer rates, 
but it does not improve reliability. Numerous schemes to provide redundancy at lower cost by 
using the idea of disk striping combined with "parity" bits (which we describe next) have been 
proposed. These schemes have different cost-performance tradeoffs and are classified into levels 
called RAID levels. 

 
The RAID scheme consists of seven levels, zero through six. These levels do not imply a 
hierarchical relationship but designate different design architectures that share three common 
characteristics: 
1. RAID is a set of physical disk drives viewed by the operating system as a single logical drive. 
2. Data are distributed across the physical drives of an array in a scheme known as striping. 
3. Redundant disk capacity is used to store parity information, which guarantees data 

recoverability in case of a disk failure. 
The details of the second and third characteristics differ for the different RAID levels. RAID 0 
and RAID 1 do not support the third characteristic. 



 

 

 

RAID Levels: 

 
 

 

 
 

 
 

 



 

 

 

 
 

 
 

 
 

 
 
 

RAID Level 0: 
For RAID 0, the user and system data are distributed across all of the disks in the array. This has 
a notable advantage over the use of a single large disk: If two different I/O requests are pending 
for two different blocks of data, then there is a good chance that the requested blocks are on 
different disks. Thus, the two requests can be issued in parallel, reducing the I/O queuing time. 
But RAID 0, as with all of the RAID levels, goes further than simply distributing the data across 
a disk array: the data are striped across the available disks. In figure all user and system data are 



 

 

 

viewed as being stored on a logical disk. The logical disk is divided into strips; these strips may 
be physical blocks, sectors, or some other unit. The strips are mapped round robin to consecutive 
physical disks in the RAID array. A set of logically consecutive strips that maps exactly one strip 
to each array member is referred to as a stripe. 

In an n-disk array, the first n logical strips are physically stored as the first strip on each of the n 
disks, forming the first stripe; the second n strips are distributed as the second strips on each disk; 
and so on. The advantage of this layout is that if a single I/O request consists of multiple 
logically contiguous strips, then up to n strips for that request can be handled in parallel, greatly 
reducing the I/O transfer time. 

 RAID 0 for High Data Transfer Capacity 
A high transfer capacity must exist along the entire path between host memory and the individual 
disk drives. This includes internal controller buses, host system I/O buses, I/O adapters, and host 
memory buses. The application must make I/O requests that drive the disk array efficiently. This 
requirement is met if the typical request is for large amounts of logically contiguous data, 
compared to the size of a strip. In this case, a single I/O request involves the parallel transfer of 
data from multiple disks, increasing the effective transfer rate compared to a single-disk transfer. 

 RAID 0 for High I/O Request Rate 
In a transaction-oriented environment, the user is typically more concerned with response time 
than with transfer rate. For an individual I/O request for a small amount of data, the I/O time is 
dominated by the motion of the disk heads (seek time) and the movement of the disk (rotational 
latency). In a transaction environment, there may be hundreds of I/O requests per second. A disk 
array can provide high I/O execution rates by balancing the I/O load across multiple disks. 
Effective load balancing is achieved only if there are typically multiple I/O requests outstanding. 
This, in turn, implies that there are multiple independent applications or a single transaction- 
oriented application that is capable of multiple asynchronous I/O requests. The performance will 
also be influenced by the strip size. If the strip size is relatively large, so that a single I/O request 
only involves a single disk access, then multiple waiting I/O requests can be handled in parallel, 
reducing the queuing time for each request. 

 
RAID Level 1: 
RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is achieved. In 
these other RAID schemes, some form of parity calculation is used to introduce redundancy, 
whereas in RAID 1, redundancy is achieved by the simple expedient of duplicating all the data. 
But in this case, each logical strip is mapped to two separate physical disks so that every disk in 
the array has a mirror disk that contains the same data. RAID 1 can also be implemented without 
data striping, though this is less common. 



 

 

 
 

 

There are a number of positive aspects to the RAID 1 organization: 
1. A read request can be serviced by either of the two disks that contains the requested data, 

whichever one involves the minimum seek time plus rotational latency. 
2. A write request requires that both corresponding strips be updated, but this can be done in 

parallel. Thus, the write performance is dictated by the slower of the two writes (i.e., the one 
that involves the larger seek time plus rotational latency). However, there is no “write 
penalty” with RAID 1.RAID levels 2 through 6 involve the use of parity bits. Therefore, 
when a single strip is updated, the array management software must first compute and update 
the parity bits as well as updating the actual strip in question. 

3. Recovery from a failure is simple. When a drive fails, the data may still be accessed from the 
second drive. 

 The principal disadvantage of RAID 1 is the cost; it requires twice the disk space of the 
logical disk that it supports. Because of that, a RAID 1 configuration is likely to be limited to 
drives that store system software and data and other highly critical files. In these cases, RAID 
1 provides real-time backup of all data so that in the event of a disk failure, all of the critical 
data is still immediately available. 

 In a transaction-oriented environment, RAID 1 can achieve high I/O request rates if the bulk 
of the requests are reads. In this situation, the performance of RAID 1 can approach double of 
that of RAID 0. 

 
RAID Level 2: 
RAID levels 2 and 3 make use of a parallel access technique. In a parallel access array, all 
member disks participate in the execution of every I/O request. Typically, the spindles of the 
individual drives are synchronized so that each disk head is in the same position on each disk at 
any given time. 

 As in the other RAID schemes, data striping is used. In the case of RAID 2 and 3, the strips 
are very small, often as small as a single byte or word. With RAID 2, an error-correcting code 
is calculated across corresponding bits on each data disk, and the bits of the code are stored in



 

 

 

the corresponding bit positions on multiple parity disks. Typically, a Hamming code is used, 
which is able to correct single-bit errors and detect double-bit errors. 

 Although RAID 2 requires fewer disks than RAID 1, it is still rather costly. The number of 
redundant disks is proportional to the log of the number of data disks. On a single read, all 
disks are simultaneously accessed. The requested data and the associated error-correcting 
code are delivered to the array controller. If there is a single-bit error, the controller can 
recognize and correct the error instantly, so that the read access time is not slowed. On a 
single write, all data disks and parity disks must be accessed for the write operation.

 RAID 2 would only be an effective choice in an environment in which many disk errors 
occur. Given the high reliability of individual disks and disk drives, RAID 2 is overkill and is 
not implemented.

RAID Level 3: 
 RAID 3 is organized in a similar fashion to RAID 2.The difference is that RAID 3 requires 

only a single redundant disk, no matter how large the disk array. RAID 3 employs parallel 
access, with data distributed in small strips. Instead of an error correcting code, a simple 
parity bit is computed for the set of individual bits in the same position on all of the data 
disks.

 

 Redundancy In the event of a drive failure, the parity drive is accessed and data is 
reconstructed from the remaining devices. Once the failed drive is replaced, the missing data 
can be restored on the new drive and operation resumed. Data reconstruction is simple.

Consider an array of five drives in which X0through X3 contain data and X4 is the parity disk. 
The parity for the ith bit is calculated as follows: 
X4(i) = X3(i) { X2(i) { X1(i) { X0(i) 

 
where { is exclusive-OR function. Suppose that drive X1 has failed. If we add X4(i) { X1(i) to 
both sides of the preceding equation, we get 
X1(i) = X4(i) { X3(i) { X2(i) { X0(i) 

 
Thus, the contents of each strip of data on X1 can be regenerated from the contents of the 
corresponding strips on the remaining disks in the array. This principle is true for RAID levels 3 
through 6. 
 In the event of a disk failure, all of the data are still available in what is referred to as reduced 

mode. In this mode, for reads, the missing data are regenerated on the fly using the exclusive- 
OR calculation. When data are written to a reduced RAID 3 array, consistency of the parity



 

 

 

must be maintained for later regeneration. Return to full operation requires that the failed disk 
be replaced and the entire contents of the failed disk be regenerated on the new disk. 

 Because data are striped in very small strips, RAID 3 can achieve very high data transfer 
rates. Any I/O request will involve the parallel transfer of data from all of the data disks. For 
large transfers, the performance improvement is especially noticeable. On the other hand, 
only one I/O request can be executed at a time. Thus, in a transaction-oriented environment, 
performance suffers.

RAID Level 4: 
RAID levels 4 through 6 make use of an independent access technique. In an independent access 
array, each member disk operates independently, so that separate I/O requests can be satisfied in 
parallel. Because of this, independent access arrays are more suitable for applications that require 
high I/O request rates and are relatively less suited for applications that require high data transfer 
rates. 

As in the other RAID schemes, data striping is used. In the case of RAID 4 through 6, the strips 
are relatively large. With RAID 4, a bit-by-bit parity strip is calculated across corresponding 
strips on each data disk, and the parity bits are stored in the corresponding strip on the parity 
disk. RAID 4 involves a write penalty when an I/O write request of small size is performed. Each 
time that a write occurs, the array management software must update not only the user data but 
also the corresponding parity bits. Consider an array of five drives in which X0 through X3 
contain data and X4 is the parity disk. Suppose that a write is performed that only involves a strip 
on disk X1. Initially, for each bit i, we have the following relationship: 
X4(i) = X3(i) { X2(i) { X1(i) { X0(i) --(1) 

 
After the update, with potentially altered bits indicated by a prime symbol: 

X4¿(i) = X3(i) { X2(i) { X1¿(i) { X0(i) 
= X3(i) { X2(i) { X1¿(i) { X0(i) { X1(i) { X1(i) 
= X3(i) { X2(i) { X1(i) { X0(i) { X1(i) { X1¿(i) 
= X4(i) { X1(i) { X1¿(i) 

The preceding set of equations is derived as follows. The first line shows that a change in X1 will 
also affect the parity disk X4. In the second line, we add the terms [{X1(i) {X1(i)]. Because the 
XOR of any quantity with itself is 0, this does not affect the equation. However, it is a 
convenience that is used to create the third line, by reordering. Finally, Equation (1) is used to 
replace the first four terms by X4(i). To calculate the new parity, the array management software 
must read the old user strip and the old parity strip. Then it can update these two strips with the 
new data and the newly calculated parity. Thus, each strip write involves two reads and two 



 

 

 

writes. In the case of a larger size I/O write that involves strips on all disk drives, parity is easily 
computed by calculation using only the new data bits. Thus, the parity drive can be updated in 
parallel with the data drives and there are no extra reads or writes. In any case, every write 
operation must involve the parity disk, which therefore can become a bottleneck. 
RAID Level 5: 
RAID 5 is organized in a similar fashion to RAID 4.The difference is that RAID 5 distributes the 
parity strips across all disks. A typical allocation is a round-robin scheme. For an n-disk array, 
the parity strip is on a different disk for the first n stripes, and the pattern then repeats. The 
distribution of parity strips across all drives avoids the potential I/O bottleneck of the single 
parity disk found in RAID 4. 

 

 
RAID Level 6: 
RAID 6 was introduced in a subsequent paper by the Berkeley researchers [KATZ89]. In the 
RAID 6 scheme, two different parity calculations are carried out and stored in separate blocks on 
different disks. Thus, a RAID 6 array whose user data require N disks consists of N ∙ 2 disks. 

 P and Q are two different data check algorithms. One of the two is the exclusive-OR 
calculation used in RAID 4 and 5. But the other is an independent data check algorithm. This 
makes it possible to regenerate data even if two disks containing user data fail.

 The advantage of RAID 6 is that it provides extremely high data availability.
Three disks would have to fail within the MTTR (mean time to repair) interval to cause data to be 
lost. On the other hand, RAID 6 incurs a substantial write penalty, because each write affects two 
parity blocks. Performance benchmarks [EISC07] show a RAID 6 controller can suffer more than 
a 30% drop in overall write performance compared with a RAID 5 implementation. RAID 5 and 
RAID 6 read performance is comparable. 

 
 



 

 

 

File Concept 
Computers can store information on several different storage media, such as magnetic disks, 
magnetic tapes, and optical disks. So that the computer system will be convenient to use, the 
operating system provides a uniform logical view of information storage. 
 The operating system abstracts from the physical properties of its storage devices to define a 

logical storage unit (the file). Files are mapped, by the operating system, onto physical 
devices. These storage devices are usually nonvolatile, so the contents are persistent through 
power failures and system reboots.

 A file is a named collection of related information that is recorded on secondary storage. 
From a user's perspective, a file is the smallest allotment of logical secondary storage; that is, 
data cannot be written to secondary storage unless they are within a file.

 Commonly, files represent programs (both source and object forms) and data. Data files may 
be numeric, alphabetic, alphanumeric, or binary. Files may be free form, such as text files, or 
may be formatted rigidly.

 In general, a file is a sequence of bits, bytes, lines, or records, the meaning of which is 
defined by the file's creator and user. The concept of a file is thus extremely general. The 
information in a file is defined by its creator. Many different types of information may be 
stored in a file-source programs, object programs, executable programs, numeric data, text, 
payroll records, graphic images, sound recordings, and so on.

A file has a certain defined structure according to its type. 
 A text file is a sequence of characters organized into lines (and possibly pages).
 A source file is a sequence of subroutines and functions, each of which is further organized 

as declarations followed by executable statements.
 An object file is a sequence of bytes organized into blocks understandable by the system's 

linker.
 An executable file is a series of code sections that the loader can bring into memory and 

execute.
 

File Attributes 
A file has certain other attributes, which vary from one operating system to another, but typically 
consist of these: 
 Name: The symbolic file name is the only information kept in human readable form.
 Identifier: This unique tag, usually a number, identifies the file within the file system; it is 

the non-human-readable name for the file.
 Type: This information is needed for those systems that support different types.
 Location: This information is a pointer to a device and to the location of the file on that 

device.
 Size: The current size of the file (in bytes, words, or blocks), and possibly the maximum 

allowed size are included in this attribute.
 Protection: Access-control information determines who can do reading, writing, executing, 

and so on.
 Time, date, and user identification: This information may be kept for creation, last 

modification, and last use. These data can be useful for  protection, security, and usage 
monitoring.

 
The information about all files is kept in the directory structure that also resides on secondary 
storage. Typically, the directory entry consists of the file's name and its unique identifier. The 
identifier in turn locates the other file attributes. It may take more than a kilobyte to record this 



 

 

 

information for each file. In a system with many files, the size of the directory itself may be 
megabytes. Because directories, like files, must be nonvolatile, they must be stored on the device 
and brought into memory piecemeal, as needed. 

 
File Operations 
A file is an abstract data type. To define a file properly, we need to consider the operations that 
can be performed on files. The operating system can provide system calls to create, write, read, 
reposition, delete, and truncate files. The basic file operations are: 

 
 Creating a file: Two steps are necessary to create a file. First, space in the file system must 

be found for the file. Second, an entry for the new file must be made in the directory. The 
directory entry records the name of the file and the location in the file system, and possibly 
other information.

 Writing a file: To write a file, we make a system call specifying both the name of the file 
and the information to be written to the file. Given the name of the file, the system searches 
the directory to find the location of the file. The system must keep a write pointer to the 
location in the file where the next write is to take place. The write pointer must be updated 
whenever a write occurs.

 Reading a file: To read from a file, we use a system call that specifies the name of the file 
and where (in memory) the next block of the file should be put. Again, the directory is 
searched for the associated directory entry, and the system needs to keep a read pointer to the 
location in the file where the next read is to take place. Once the read has taken place, the 
read pointer is updated. A given process is usually only reading or writing a given file, and 
the current operation location is kept as a per-process current-file-position pointer. Both the 
read and write operations use this same pointer, saving space and reducing the system 
complexity.

 Repositioning within a file: The directory is searched for the appropriate entry, and the 
current-file-position is set to a given value. Repositioning within a file does not need to 
involve any actual I/O. This file operation is also known as a file seek.

  Deleting a file: To delete a file, we search the directory for the named file. Having found the 
associated directory entry, we release all file space, so that it can be reused by other files, and 
erase the directory entry.

 Truncating a file: The user may want to erase the contents of a file but keep its attributes. 
Rather than forcing the user to delete the file and then recreate it, this function allows all 
attributes to remain unchanged-except for file length-but lets the file be reset to length zero 
and its file space released.

 
Most of the file operations mentioned involve searching the directory for the entry associated 
with the named file. To avoid this constant searching, many systems require that an open system 
call be used before that file is first used actively. The operating system keeps a small table 
containing information about all open files (the open-file table). When a file operation is 
requested, the file is specified via an index into this table, so no searching is required. When the 



 

 

 

file is no longer actively used, it is closed by the process and the operating system removes its 
entry in the open-file table. 

 
The implementation of the open and close operations in a multiuser environment, such as UNIX, 
is more complicated. In such a system, several users may open the file at the same time. 
Typically, the operating system uses two levels of internal tables: a per-process table and a 
system-wide table. 
The per-process table tracks all files that a process has open. Stored in this table is information 
regarding the use of the file by the process. For instance, the current file pointer for each file is 
found here, indicating the location in the file that the next read or write call will affect. Access 
rights to the file and accounting information can also be included. Each entry in the per-process 
table in turn points to a system-wide open-file table. 
The system-wide table contains process-independent information, such as the location of the file 
on disk, access dates, and file size. Once a file is opened by one process, another process 
executing an open call simply results in a new entry being added to the process' open-file table, 
pointing to the appropriate entry in the system-wide table. Typically, the open-file table also has 
an open count associated with each file, indicating the number of processes that have the file 
open. Each close decreases this count, and when the open count reaches zero, the file is no longer 
in use, and the file's entry is removed from the open file table. In summary, several pieces of 
information are associated with an open file. 

 File pointer: On systems that do not include a file offset as part of the read and write system 
calls, the system must track the last read-write location as a current-file-position pointer. This 
pointer is unique to each process operating on the file, and therefore must be kept separate 
from the on-disk file attributes.

 File open count: As files are closed, the operating system must reuse its open-file table 
entries, or it could run out of space in the table. Because multiple processes may open a file, 
the system must wait for the last file to close before removing the open-file table entry. This 
counter tracks the number of opens and closes and reaches zero on the last close. The system 
can then remove the entry.

 Disk location of the file: Most file operations require the system to modify data within the 
file. The information needed to locate the file on disk is kept in memory to avoid having to 
read it from disk for each operation.

 Access rights: Each process opens a file in an access mode. This information is stored on the 
per-process table so the operating system can allow or deny subsequent I/O requests.

 
File Types 
A common technique for implementing file types is to include the type as part of the file name. 
The name is split into two parts-a name and an extension, usually separated by a period character. 
In this way, the user and the operating system can tell from the name alone what the type of a file 
is. For example, in MS-DOS, a name can consist of up to eight characters followed by a period 
and terminated by an extension of up to three characters. The system uses the extension to 
indicate the type of the file and the type of operations that can be done on that file. For instance, 
only a file with a .corn, .exe, or .bat extension can be executed. The .corn and .exe files are two 



 

 

 

forms of binary executable files, whereas a .bat file is a batch file containing, in ASCII format, 
commands to the operating system. MS-DOS recognizes only a few extensions, but application 
programs also use extensions to indicate file types in which they are interested. For example, 
assemblers expect source files to have an .asm extension, and the Wordperfect word processor 
expects its file to end with a .wp extension. These extensions are not required, so a user may 
specify a file without the extension (to save typing), and the application will look for a file with 
the given name and the extension it expects. Because these extensions are not supported by the 
operating system, they can be considered as "hints" to applications that operate on them. 

 

 
File Structure 
File types also may be used to indicate the internal structure of the file. The source and object 
files have structures that match the expectations of the programs that read them. Certain files 
must conform to a required structure that is understood by the operating system. For example, the 
operating system may require that an executable file have a specific structure so that it can 
determine where in memory to load the file and what the location of the first instruction is. Some 



 

 

 

operating systems extend this idea into a set of system-supported file structures, with sets of 
special operations for manipulating files with those structures. 

 

Internal File Structure 
Internally, locating an offset within a file can be complicated for the operating system. All disk 
I/O is performed in units of one block (physical record), and all blocks are the same size. It is 
unlikely that the physical record size will exactly match the length of the desired logical record. 
Logical records may even vary in length. Packing a number of logical records into physical 
blocks is a common solution to this problem. For example, the UNIX operating system defines 
all files to be simply a stream of bytes. Each byte is individually addressable by its offset from 
the beginning (or end) of the file. In this case, the logical record is 1 byte. The file system 
automatically packs and unpacks bytes into physical disk blocks-say, 512 bytes per block-as 
necessary. 
The logical record size, physical block size, and packing technique determine how many logical 
records are in each physical block. The packing can be done either by the user's application 
program or by the operating system. In either case, the file may be considered to be a sequence of 
blocks. All the basic I/O functions operate in terms of blocks. The conversion from logical 
records to physical blocks is a relatively simple software problem. Because disk space is always 
allocated in blocks, some portion of the last block of each file is generally wasted. 
If each block were 512 bytes, then a file of 1,949 bytes would be allocated four blocks (2,048 
bytes); the last 99 bytes would be wasted. The wasted bytes allocated to keep everything in units 
of blocks (instead of bytes) is internal fragmentation. All file systems suffer from internal 
fragmentation; the larger the block size, the greater the internal fragmentation. 

 
Access Methods 
Files store information. When it is used, this information must be accessed and read into 
computer memory. The information in the file can be accessed in several ways. 

 
Sequential Access 
The simplest access method is sequential access. Information in the file is processed in order, 
one record after the other. This mode of access is by far the most common; for example, editors 
and compilers usually access files in this fashion. 

 
The bulk of the operations on a file is reads and writes. A read operation reads the next portion of 
the file and automatically advances a file pointer, which tracks the I/O location. Similarly, a write 
appends to the end of the file and advances to the end of the newly written material (the new end 
of file). Such a file can be reset to the beginning and, on some systems; a program may be able to 
skip forward or backward n records, for some integer n-perhaps only for n = 1. Sequential access 
is based on a tape model of a file, and works as well on sequential-access devices as it does on 
random-access ones. 



 

 

 

Direct Access 
Another method is direct access (or relative access). A file is made up of fixed length logical 
records that allow programs to read and write records rapidly in no particular order. The direct- 
access method is based on a disk model of a file, since disks allow random access to any file 
block. For direct access, the file is viewed as a numbered sequence of blocks or records. A direct- 
access file allows arbitrary blocks to be read or written. Thus, we may read block 14, then read 
block 53, and then write block 7. There are no restrictions on the order of reading or writing for a 
direct-access file. Direct-access files are of great use for immediate access to large amounts of 
information. Databases are often of this type. When a query concerning a particular subject 
arrives, we compute which block contains the answer, and then read that block directly to 
provide the desired information. 
For the direct-access method, the file operations must be modified to include the block number as 
a parameter. Thus, we have read n, where n is the block number, rather than read next, and write 
n rather than write next. An alternative approach is to retain read next and write next, as with 
sequential access, and to add an operation position file to n, where n is the block number. Then, 
to effect a read n, we would position to n and then read next. 
The block number provided by the user to the operating system is normally a relative block 
number. A relative block number is an index relative to the beginning of the file. Thus, the first 
relative block of the file is 0, the next is 1, and so on, even though the actual absolute disk 
address of the block may be 14703 for the first block and 3192 for the second. The use of relative 
block numbers allows the operating system to decide where the file should be placed (called the 
allocation problem,), and helps to prevent the user from accessing portions of the file system that 
may not be part of his file. 
Not all operating systems support both 
sequential and direct access for files. 
Some systems allow only sequential file 
access; others allow only direct access. 
Some systems require that a file be 
defined as sequential or direct when it is 
created; such a file can be accessed only 
in a manner consistent with its 
declaration. 
However, it is easy to simulate sequential access on a direct-access file. If we simply keep a 

variable cp that defines our current position, then we can simulate sequential file operations, as 
shown in Figure. On the other hand, it is extremely inefficient and clumsy to simulate a direct- 
access file on a sequential-access file. 

 
Other Access Methods 
Other access methods can be built on top of a direct-access method. These methods generally 
involve the construction of an index for the file. The index, like an index in the back of a book, 
contains pointers to the various blocks. To find a record in the file, we first search the index, and 
then use the pointer to access the file directly and to find the desired record. 



 

 

 

 
 

Directory Structure 
The file systems of computers can be extensive. Some systems store millions of files on terabytes 
of disk. To manage all these data, we need to organize them. This organization is usually done in 
two parts. First, disks are split into one or more partitions, also known as minidisks in the IBM 
world or volumes in the PC and Macintosh arenas. Typically, each disk on a system contains at 
least one partition, which is a low-level structure in which files and directories reside. 
Sometimes, partitions are used to provide several separate areas within one disk, each treated as a 
separate storage device, whereas other systems allow partitions to be larger than a disk to group 
disks into one logical structure. In this way, the user needs to be concerned with only the logical 
directory and file structure, and can ignore completely the problems of physically allocating 
space for files. For this reason partitions can be thought of as virtual disks. Partitions can also 
store multiple operating systems, allowing a system to boot and run more than one. 

 
 
 

Second, each partition contains information about files within it. This information is kept in 
entries in a device directory or volume table of contents. The device directory (more 
commonly known simply as a directory) records information-such as name, location, size, and 
type-for all files on that partition. 



 

 

 

The directory can be viewed as a symbol table that translates file names into their directory 
entries. The directory itself can be organized in many ways. We want to be able to insert entries, 
to delete entries, to search for a named entry, and to list all the entries in the directory. 
Following common operations are to be performed on directory: 
 Search for a file: We need to be able to search a directory structure to find the entry for a 

particular file. Since files have symbolic names and similar names may indicate a relationship 
between files, we may want to be able to find all files whose names match a particular 
pattern.

 Create a file: New files need to be created and added to the directory.
 Delete a file: When a file is no longer needed, we want to remove it from the directory.
 List a directory: We need to be able to list the files in a directory, and the contents of the 

directory entry for each file in the list.
 Rename a file: Because the name of a file represents its contents to its users, the name must 

be changeable when the contents or use of the file changes. Renaming a file may also allow 
its position within the directory structure to be changed.

 Traverse the file system: We may wish to access every directory, and every file within a 
directory structure. For reliability, it is a good idea to save the contents and structure of the 
entire file system at regular intervals. This saving often consists of copying all files to 
magnetic tape. This technique provides a backup copy in case of system failure or if the file is 
simply no longer in use. In this case, the file can be copied to tape, and the disk space of that 
file released for reuse by another file.

 
Single-Level Directory 
The simplest directory structure is the single-level directory. All files are contained in the same 
directory, which is easy to support and understand A single-level directory has significant 
limitations, however, when the number of files increases or when the system has more than one 
user. Since all files are in the same directory, they must have unique names. If two users call their 
data file test, then the unique-name rule is violated. 

Even a single user on a single-level directory may find it difficult to remember the names of all 
the files, as the number of files increases. It is not uncommon for a user to have hundreds of files 
on one computer system and an equal number of additional files on another system. In such an 
environment, keeping track of so many files is a daunting task. 

 
Two-Level Directory 
A single-level directory often leads to confusion of file names between different users. The 
standard solution is to create a separate directory for each user. In the two-level directory 
structure, each user has her own user file directory (UFD). Each UFD has a similar structure, 
but lists only the files of a single user. When a user job starts or a user logs in, the system's 



 

 

 

master file directory (MFD) is searched. The MFD is indexed by user name or account number, 
and each entry points to the UFD for that user. 

 
When a user refers to a particular file, only his own UFD is searched. Thus, different users may 
have files with the same name, as long as all the file names within each UFD are unique. 
To create a file for a user, the operating system searches only that user's UFD to ascertain 
whether another file of that name exists. To delete a file, the operating system confines its search 
to the local UFD; thus, it cannot accidentally delete another user's file that has the same name. 
The user directories themselves must be created and deleted as necessary. A special system 
program is run with the appropriate user name and account information. The program creates a 
new UFD and adds an entry for it to the MFD. The execution of this program might be restricted 
to system administrators. 
Although the two-level directory structure solves the name-collision problem, it still has 
disadvantages. This structure effectively isolates one user from another. This isolation is an 
advantage when the users are completely independent, but is a disadvantage when the users want 
to cooperate on some task and to access one another’s files. Some systems simply do not allow 
local user files to be accessed by other users. 

 
Tree Structured Directories 
The natural generalization of two-level directory is to extend the directory structure to a tree or 
arbitrary height. This generalization allows users to create their own sub directories and to 
organize their files accordingly. The tree has a root directory. Each file in the system has a 
unique path name. A path name is the path from the root, through all the subdirectories, to a 
specified file. 

 



 

 

 

Path names can be of two types: absolute path names or relative path names. An absolute path 
name begins at the root and follows a path down to the specified file, giving the directory names 
on the path. A relative path name defines a path from the current directory. For example, in the 
tree-structured file system of Figure, if the current directory is root/spell/mail, then the relative 
path name prt/first refers to the same file as does the absolute path name root/spell/mail/prt/fivst. 

 
With a tree-structured directory system, users can access, in addition to their files, the files of 
other users. For example, user B can access files of user A by specifying their path names. User 
B can specify either an absolute or a relative path name. Alternatively, user B could change her 
current directory to be user A's directory, and access the files by their file names. Some systems 
also allow users to define their own search paths. In this case, user B could define her search path 
to be (1) her local directory, (2) the system file directory, and (3) user A's directory, in that order. 
As long as the name of a file of user A did not conflict with the name of a local file or system 
file, it could be referred to simply by its name. 

 
Acyclic-Graph Directories 
Consider two programmers who are working on a joint project. The files associated with that 
project can be stored in a subdirectory, separating them from other projects and files of the two 
programmers. But since both programmers are equally responsible for the project, both want the 
subdirectory to be in their own directories. The common subdirectory should be shared. A shared 
directory or file will exist in the file system in two (or more) places at once. A tree structure 
prohibits the sharing of files or directories. An acyclic graph allows directories to have shared 
subdirectories and files. 
The same file or subdirectory may be in two 
different directories. An acyclic graph, that 
is, a graph with no cycles, is a natural 
generalization of the tree structured directory 
scheme. A shared file (or directory) is not the 
same as two copies of the file. With two 
copies, each programmer can view the copy 
rather than the original, but if one 
programmer changes the file, the changes 
will not appear in the other's copy. With a 
shared file, only one actual file exists, so any 
changes made by one person are immediately 
visible to the other. Sharing is particularly 
important for subdirectories; a new file 
created by one person will automatically 
appear in all the shared subdirectories. 

 
When people are working as a team, all the files they want to share may be put into one 
directory. The UFDs of all the team members would each contain this directory of shared files as 
a subdirectory. Even when there is a single user, his file organization may require that some files 



 

 

 

be put into different subdirectories. For example, a program written for a particular project 
should be both in the directory of all programs and in the directory for that project. 

 
An acyclic-graph directory structure is more flexible than is a simple tree structure, but it is also 
more complex. Several problems must be considered carefully. A file may now have multiple 
absolute path names. Consequently, distinct file names may refer to the same file. This situation 
is similar to the aliasing problem for programming languages. If we are trying to traverse the 
entire file system-to find a file, to accumulate statistics on all files, or to copy all files to backup 
storage-this problem becomes significant, since we do not want to traverse shared structures 
more than once. 
Another problem involves deletion. When can the space allocated to a shared file be deallocated 
and reused? One possibility is to remove the file whenever anyone deletes it, but this action may 
leave dangling pointers to the now-nonexistent file. Worse, if the remaining file pointers contain 
actual disk addresses, and the space is subsequently reused for other files, these dangling 
pointers may point into the middle of other files. In a system where sharing is implemented by 
symbolic links, this situation is somewhat easier to handle. The deletion of a link does not need 
to affect the original file; only the link is removed. If the file entry itself is deleted, the space for 
the file is deallocated, leaving the links dangling. We can search for these links and remove them 
also, but unless a list of the associated links is kept with each file, this search can be expensive. 
Alternatively, we can leave the links until an attempt is made to use them. At that time, we can 
determine that the file of the name given by the link does not exist, and can fail to resolve the 
link name; the access is treated just like any other illegal file name. 

 
General Graph Directory 
One serious problem with using an acyclic-graph structure is ensuring that there are no cycles. If 
we start with a two-level directory and allow users to create subdirectories, a tree-structured 
directory results. It should be fairly easy to see that simply adding new files and subdirectories to 
an existing tree structured directory preserves the tree-structured nature. However, when we add 
links to an existing tree-structured directory, the tree structure is destroyed, resulting in a simple 
graph structure. 

 



 

 

 

File Sharing 
In a multiuser system, there is almost always a requirement for allowing files to be shared among 
a number of users. 
 Multiple Users 
 When an operating system accommodates multiple users, the issues of file sharing, file 

naming, and file protection become preeminent. Given a directory structure that allows files 
to be shared by users, the system must mediate the file sharing.

 The system either can allow a user to access the files of other users by default, or it may 
require that a user specifically grant access to the files.

 These are the issues of access control and protection,
 To implement sharing and protection, the system must maintain more file and directory 

attributes than on a single-user system.
 Most systems have evolved to the concepts of file/directory owner (or user) and group.
 The owner is the user who may change attributes, grant access, and has the most control over 

the file or directory. The group attribute of a file is used to define a subset of users who may 
share access to the file. Most systems implement owner attributes by managing a list of user 
names and associated user identifiers (user IDS).

 When a user logs in to the system, the authentication stage determines the appropriate user ID 
for the user. That user ID is associated with all of the user's processes and threads. When they 
need to be user readable, they are translated back to the user name via the user name list.

 
 Remote File Systems 
 Networking allows the sharing of resources spread within a campus or even around the 

world. One obvious resource to share is data, in the form of files. Through the evolution of 
network and file technology, file-sharing methods have changed.

 In the first implemented method, users manually transfer files between machines via 
programs like ftp.

 The second major method is a distributed file system (DFS) in which remote directories are 
visible from the local machine.

 In some ways, the third method, the World Wide Web, is a reversion to the first. A browser 
is needed to gain access to the remote files, and separate operations (essentially a wrapper for 
ftp) are used to transfer files.

 ftp is used for both anonymous and authenticated access. Anonymous access allows a user to 
transfer files without having an account on the remote system. The World Wide Web uses 
anonymous file exchange almost exclusively.

 The Client-Server Model 
Remote file systems allow a computer to mount one or more file systems from one or more 
remote machines. In this case, the machine containing the files is the server, and the machine 
wanting access to the files is the client. The client-server relationship is common with 
networked machines. Generally, the server declares that a resource is available to clients and 
specifies exactly which resource (in this case, which files) and exactly which clients. Files are 
usually specified on a partition or subdirectory level. A server can serve multiple clients, and 



 

 

 

a client can use multiple servers, depending on the implementation details of a given client- 
server facility. 

 
 Distributed Information Systems 

To ease the management of client-server services, distributed information systems, also known 
as distributed naming services, have been devised to provide a unified access to the information 
needed for remote computing. Domain name system (DNS) provides host-name-to-network- 
address translations for the entire Internet (including the World Wide Web). Before DNS was 
invented and became widespread, files containing the same information were sent via email or 
ftp between all networked hosts. 

 
 Failure Modes 

Local file systems can fail for a variety of reasons, including failure of the disk containing the file 
system, corruption of the directory structure or other disk management information (collectively 
called metadata), disk-controller failure, cable failure, or host adapter failure. User or systems- 
administrator failure can also cause files to be lost, or entire directories or partitions to be deleted. 
Many of these failures would cause a host to crash and an error condition to be displayed, and 
require human intervention to repair. Some failures do not cause loss of data or loss of 
availability of data. Redundant arrays of inexpensive disks (RAID) can prevent the loss of a 
disk from resulting in the loss of data. 

 
 Consistency Semantics 
Consistency semantics is an important criterion for evaluating any file system that supports file 
sharing. It is a characterization of the system that specifies the semantics of multiple users 
accessing a shared file simultaneously. In particular, these semantics should specify when 
modifications of data by one user are observable by other users. The semantics are typically 
implemented as code with the file system. 

 
 UNIX Semantics 
The UNIX file system uses the following consistency semantics: 

 Writes to an open file by a user are visible immediately to other users that have this file open 
at the same time.

 One mode of sharing allows users to share the pointer of current location into the file. Thus, 
the advancing of the pointer by one user affects all sharing users. Here, a file has a single 
image that interleaves all accesses, regardless of their origin.

 In the UNIX semantics a file is associated with a single physical image that is accessed as an 
exclusive resource. Contention for this single image results in user processes being delayed.

 
 Session Semantics 
The Andrew file system (AFS) uses the following consistency semantics: 

 Writes to an open file by a user are not visible immediately to other users that have the 
same file open simultaneously. 



 

 

 

 Once a file is closed, the changes made to it are visible only in sessions starting later. 
Already open instances of the file do not reflect these changes. 

 According to these semantics, a file may be associated temporarily with several (possibly 
different) images at the same time. Consequently, multiple users are allowed to perform 
both read and write accesses concurrently on their image of the file, without delay. 
Almost no constraints are enforced on scheduling accesses. 

 Immutable-Shared-Files Semantics
A unique approach is that of immutable shared files. Once a file is declared as shared by its 
creator, it cannot be modified. An immutable file has two key properties: 
Its name may not be reused and its contents may not be altered. Thus, the name of an immutable 
file signifies that the contents of the file are fixed, rather than the file being a container for 
variable information. 
The implementation of these semantics in a distributed system is simple, because the sharing is 
disciplined (read-only). 

 
Protection 
When information is kept in a computer system, we want to keep it safe from physical damage 
(reliability) and improper access (protection). 
Protection can be provided in many ways. For a small single-user system, we might provide 
protection by physically removing the floppy disks and locking them in a desk drawer or file 
cabinet. In a multiuser system, however, other mechanisms are needed. 

 Types of Access
The need to protect files is a direct result of the ability to access files. Systems that do not permit 
access to the files of other users do not need protection. Thus, we could provide complete 
protection by prohibiting access. Protection mechanisms provide controlled access by limiting 
the types of file access that can be made. Access is permitted or denied depending on several 
factors, one of which is the type of access requested. Several different types of operations may be 
controlled: 

 Read: Read from the file.
 Write: Write or rewrite the file.
 Execute: Load the file into memory and execute it.
 Append: Write new information at the end of the file.
 Delete: Delete the file and free its space for possible reuse.
 List: List the name and attributes of the file.
Other operations, such as renaming, copying, or editing the file, may also be controlled. For 
many systems, however, these higher-level functions may be implemented by a system program 
that makes lower-level system calls. Protection is provided at only the lower level. For instance, 
copying a file may be implemented simply by a sequence of read requests. In this case, a user 
with read access can also cause the file to be copied, printed, and so on. 

 Access Control
The most common approach to the protection problem is to make access dependent on the 
identity of the user. Various users may need different types of access to a file or directory. The 



 

 

 

most general scheme to implement identity-dependent access is to associate with each file and 
directory an access-control list (ACL) specifying the user name and the types of access allowed 
for each user. 
When a user requests access to a particular file, the operating system checks the access list 
associated with that file. If that user is listed for the requested access, the access is allowed. 
Otherwise, a protection violation occurs, and the user job is denied access to the file. 
This approach has the advantage of enabling complex access methodologies. The main problem 
with access lists is their length. If we want to allow everyone to read a file, we must list all users 
with read access. This technique has two undesirable consequences: 

 Constructing such a list may be a tedious and unrewarding task, especially if we do not know 
in advance the list of users in the system.

 The directory entry, previously of fixed size, now needs to be of variable size, resulting in 
more complicated space management.

 
These problems can be resolved by use of a condensed version of the access list. To condense the 
length of the access control list, many systems recognize three classifications of users in 
connection with each file: 

 Owner: The user who created the file is the owner.
 Group: A set of users who are sharing the file and need similar access is a group, or work 

group.
 Universe: All other users in the system constitute the universe.

 
 Other Protection Approaches 
 Another approach to the protection problem is to associate a password with each file. Just as 

access to the computer system is often controlled by a password, access to each file can be 
controlled by a password. If the passwords are chosen randomly and changed often, this 
scheme may be effective in limiting access to a file to only those users who know the 
password. This scheme, however, has several disadvantages. First, the number of passwords 
that a user needs to remember may become large, making the scheme impractical. Secondly, 
if only one password is used for all the files, then, once it is discovered, all files are 
accessible.

 In a multilevel directory structure, we need to protect not only individual files, but also 
collections of files in a subdirectory; that is, we need to provide a mechanism for directory 
protection. The directory operations that must be protected are somewhat different from the 
file operations. We want to control the creation and deletion of files in a directory.

 Thus, listing the contents of a directory must be a protected operation. Therefore, if a path 
name refers to a file in a directory, the user must be allowed access to both the directory and 
the file. In systems where files may have numerous path names (such as acyclic or general 
graphs), a given user may have different access rights to a file, depending on the path name 
used.


