

MEERUT INSTITUTE OF ENGINEERING AND TECHNOLOGY

NH-58, Delhi-Roorkee Highway, Baghpat Road, Meerut – 250 005 U.P. Pre-University Test (PUT): Even Semester 2022-23

Course/Branch	: B Tech -CSE, IT, CSIT, DS, IOT, AI, and AI/ML	Semester	: IV
Subject Name	: Operating Systems	Max. Marks	s: 100
Subject Code	: KCS 401	Time	: 180 min

CO-1: On the completion of this course, the student will be able to understand the basic concept of the Operating system.

CO-2: On the completion of this course, the student will be able to discuss concurrent processes and their execution.

CO-3: On the completion of this course, the student will be able to analyze the concept of process scheduling and deadlock.

CO-4: On the completion of this course, the student will be able to select different approaches to memory management techniques.

CO-5: On the completion of this course, the student will be able to apply the concepts of disk scheduling.

Section – A # 20 Marks (Short Answer Type Questions)

Attempt ALL the questions. Each Question is of 2 marks (10 x 2 = 20 marks)

Q.	No.	COx	Question Description # Attempt ALL the questions. Each Question is of 2	
	marks.		marks.	
1	Α	CO1	Define the term operating system and mention its major functions. (K1)	
	B	CO1	What is Spooling? (K1)	
	С	CO2	Differentiate between concurrent execution and parallel execution. (K2)	
	D	CO2	What is the use of inter-process communication and context switching? (K1)	
	Е	CO3	Describe the typical elements of the process control block. (K2)	
	F	CO3	What are the various scheduling criteria for CPU scheduling? (K1)	
	G	CO4	Explain the difference between internal and external fragmentation. (K2)	
	Н	CO4	Write the difference between paging and segmentation. (K2)	
	I	CO5	Write a short note on I/O buffering. (K1)	
	J	CO5	Discuss the criteria for choosing a file organization. (K2)	

Section – B # 30 Marks (Medium Answer Type Questions)

Attempt ALL the questions. Each Question is of 6 marks. $(5 \times 6 = 30 \text{ marks})$

Q.2 (CO-1): Explain in detail about the Monolithic and Microkernel Systems. (K1-K2)

OR

Explain in detail about the Operating System Services. (K1-K2)

Q.3 (CO-2): State the Critical Section Problem. Illustrate the software-based solution to the Critical Section problem. (K2-K3)

OR

What is the Dining Philosophers' problem? Discuss the solution to the Dining philosopher's problem using semaphores. (K2-K3)

Q.4 (CO-3): Differentiate between the user thread and kernel thread. What is thread cancellation? (K2-K4)

OR

Describe Banker's algorithm for deadlock avoidance and safe allocation both. Discuss the usage of the wait-for-graph method. (K2-K4)

Q.5 (CO-4): When will the page faults occur? What is the procedure for handling the page fault? (K1-K3)

OR

What are the causes of thrashing? What are the steps taken by the system to eliminate this problem? (K1-K3)

Q.6 (CO-5): Describe schemes for defining the logical structure of the directory. (K1-K2)

OR

List the various file attributes, file operations, and file types. Explain about the file system mounting and file sharing. (K1-K2)

Section – C # 50 Marks (Medium / Long Answer Type Questions)

Attempt ALL the questions. Each Question is of 10 marks.

Q.7 (CO-1): Attempt any ONE question.

a. What do you understand by system call? How is a system call made? How a system call is handled by the system? Choose a suitable example for explanation.(K1-K3)
b. Differentiate between (with one suitable example) (K1-K3)

i) Interactive and Batch Processing System

ii) Multiprogramming and Time-Sharing System

Q.8 (CO-2): Attempt any ONE question.

- **a.** State the Producer-consumer problem. Given a solution to the solution using semaphores. (K1-K3)
- **b.** State the Critical Section Problem with an example. Illustrate the software-based solution to the Critical Section problem. (K1-K3)

Q.9 (CO-3): Attempt any ONE question.

a. Consider the following snapshot of a system:

Process	Max	Allocation	Available
Iu	ABCD	ABCD	ABCD
P0	5012	3001	3211
P1	2 7 5 0	1 1 0 0	
P2	2 3 5 6	1 2 5 4	
Р3	1653	0633	
P4	1656	0212	

By using Banker's algorithm, answer the following questions: (K2-K4)

- i. How many resources of types A, B, C, and D are there?
- **ii.** What are the contents of the need matrix?
- iii. Find if the system is in a safe state? If it is, find the safe sequence.
- **b.** Consider the set of 5 processes whose arrival time and burst time are given below- (K2-K4)

Process Id	Arrival Time	Burst Time
P1	3	1
P2	1	4
P3	4	3
P4	0	6
P5	2	2

- **i.** If the CPU scheduling policy is **SJF non-preemptive**, calculate the average waiting time and average turnaround time.
- **ii.** If the CPU scheduling policy is **SJF preemptive**, calculate the average waiting time and average turnaround time.

Q.10 (CO-4): Attempt any ONE question.

a. Consider the following page reference string: (K4)

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6

How many page faults would occur for the **Optimal and LRU page replacement algorithm**? Assume that there are **three frames and all frames are initially empty**.

b. Consider the following segment table: (K4)

Segment No	Limit	Base
0	700	1221
1	15	2301
2	105	90
3	520	1327
4	98	1952

Calculate the physical address for the following logical addresses: i.) 0, 430

ii.) 1, 11

iii.) 2, 100

iv.) 3, 425

v.) 4,95

Q.11 (CO-5): Attempt any ONE question.

- **a.** Write short notes on: (K2)
 - i.) I/O buffering
 - ii.) Sequential File
- **b.** Consider an imaginary disk having **200 cylinders**. Suppose the head of the moving disk is currently serving a request at **track 55** having direction towards the highest cylinders. Given the order of request is:

65, 170, 35, 120, 20, 150

If the queue request is kept in FIFO order, what is the **total head movement** to satisfy these requests for the following disk scheduling algorithm? (K2-K4)

i.) FCFS ii.) SSTF iii.) C-LOOK iv.) C-SCAN
