
10/17/2022

1

UNIT-3 Searching, Sorting and

Hashing

Table of Contents

3

� Searching:
� Concept of Searching

� Sequential Search

� Index Sequential Search

� Binary Search

� Sorting:
� Concept of Sorting

� Bubble Sort

� Selection Sort

� Insertion Sort

� Quick Sort

� Merge Sort

� Heap Sort

� Radix Sort

� Hashing:
� Concept of Hashing

� Collision Resolution Techniques used in Hashing
Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/17/2022

2

Concept of Searching

4

� Searching in data structure refers to the process
of finding location LOC of an element in a list.

� This is one of the important parts of many data
structures algorithms, as one operation can be
performed on an element if and only if we find it.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Why do we need Searching?

5

� Searching is one of the core computer science operation.

� We know that today’s computers store a lot of
information.

� To retrieve this information proficiently we need very
efficient searching algorithms.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/17/2022

3

Types of Searching

6

� Many different searching techniques exist and the

most commonly used searching techniques are:

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

1

Linear Search

7

� Linear search or sequential search is a

method for finding a particular value in a

list that consists of checking every one of

its elements, one at a time and in sequence,

until the desired one is found.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

How Linear Search works

8

� Linear search in an array is usually programmed
by stepping up an index variable until it reaches
the last index.

� This normally requires two comparisons for each
list item:
� One to check whether the index has reached the end of

the array, and

� Another one to check whether the item has the desired
value.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

2

Linear Search Algorithm

9

� Repeat For J = 1 to N

� If (ITEM == A[J]) Then

� Print: ITEM found at location J

� Return [End of If]

� [End of For Loop]

� If (J > N) Then

� Print: ITEM doesn’t exist [End of If]

� Exit

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Dr. Sunil Kumar, CSE Dept., MIET Meerut10

printf("\nEnter the element to be
searched: "); scanf("%d",&item);

for(i=1; i<=n; i++)
{
if(a[i]==item)
{
printf("\n%d is present at position

%d", a[i], i);
break;
}
}

if(i>n)
printf("\n Element is not present.");
getch();
}

#include<stdio.h>

#include<conio.h> void main()

{

int i ,n, item, a[20];

clrscr();

printf("\nEnter no of elements: ");
scanf("%d",&n);

printf("\nEnter %d elements: ",n);
for(i=1; i<=n; i++)

{

scanf("%d",&a[i]);

}

10/18/2022

3

Complexity of Linear Search

11

� Linear search on a list of n elements. In the worst case, the

search must visit every element once. This happens when

the value being searched for is either the last element in the

list, or is not in the list.

� However, on average, assuming the value searched for is in

the list and each list element is equally likely to be the value

searched for, the search visits only n/2 elements. In best

case the array is already sorted.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Indexed Sequential Search

12

� An index file can be used to effectively overcome the

problem associated with sequential files and to speed up the

key search.

� In this searching method, first of all, an index file is created,

that contains some specific group or division of required

record when the index is obtained, then the partial indexing

takes less time cause it is located in a specified group.

Note: When the user makes a request for specific records it will

find that index group first where that specific record is recorded.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

4

Indexed Sequential Search…

13

Characteristics of Indexed Sequential Search:

� In Indexed Sequential Search a sorted index is set aside in addition to the

array.

� Each element in the index points to a block of elements in the array or

another expanded index.

� The index is searched 1st then the array and guides the search in the array.

Note: Indexed Sequential Search actually does the indexing multiple times,

like creating the index of an index.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

14

Advantages:

� More efficient

� Time required is less

Indexed Sequential Search

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

5

Binary Search

15

� A binary search or half-interval search algorithm

finds the position of a specified input value (the

search "key") within an array sorted by key value.

� For binary search, the array should be arranged in

ascending or descending order.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

How Binary Search Works

16

� Searching a sorted collection is a common task.

� A dictionary is a sorted list of word definitions.

� Given a word, one can find its definition. A

telephone book is a sorted list of people's

names, addresses, and telephone numbers.

� Knowing someone's name allows one to quickly

find their telephone number and address.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

6

How Binary Search Works

17

• The basic idea is straightforward. First search the
value in the middle position. If key X is less than this
value, then search the middle of the left half next. If
X is greater than this value, then search the middle
of the right half next. Continue in this manner.

• If the array is sorted, then we can apply the binary
search technique.

number

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Sequence of Successful Search

18

0 1 2 3 4 5 6 7 8

5 12 17 23 38 44 77 84 90

search(44)

low

 2
mid = low+ high

high

low = mid+1 = 5

mid

38 < 44

low high mid

0 8 4#1

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

7

Sequence of Successful Search

19

5 12 17 23 38 44 77

0 1 2 3 4 5 6 7 8

84 90

search(44)low high mid

 2
mid = low+ high

high = mid-1=5

mid

44 < 77

4

6

highlow

0

5

8

8

#1

#2

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Sequence of Successful Search

20

5 12 17 23 38 44 77

0 1 2 3 4 5 6 7 8

84 90

search(44)low high mid

 2
mid = low+ high

low high

0

5

5

8

8

5

#1

#2

#3

mid

4

6

5

Successful Search!!

44 == 44

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

8

Sequence of Unsuccessful Search

21

5 12 17 23 38

0 1 2 3 4 5 6 7 8

44 77 84 90

search(45)low high mid

 2
mid = low+ high

#1 0 8 4

#2 5 8 6

#3 5 5 5

#4 6 5

Unsuccessful Search
high low

low > highno more elements to search

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

1

Concept of Sorting

26

� Sorting is nothing but arrangement/storage of data in

sorted order, it can be in ascending or descending

order.

� The term Sorting comes into picture with the term

Searching.

� There are so many things in our real life that we need

to search, like a particular record in database, roll

numbers in merit list, a particular telephone number,

any particular page in a book etc.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Internal and External Sorting

27

� Any sort algorithm that uses main memory

exclusively during the sorting is called as

internal sort.

� Internal sorting is faster than external

sorting.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

2

Internal Sorting

28

� Bubble Sort

� Selection Sort

� Insertion Sort

� QuickSort

� HeapSort

� Radix Sort

� Bucket Sort

� Shell Sort

Dr. Sunil Kumar, CSE Dept., MIET Meerut

External Sorting

29

� Any sort algorithm that uses external
memory, such as tape or disk, during the
sorting is called as external sorting.

� Merge sort is an example of external
sorting.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

3

Stable and Not Stable Sorting

30

� If a sorting algorithm, after sorting the contents, does not

change the sequence of similar content in which they

appear, it is called stable sorting.

� If a sorting algorithm, after sorting the contents,

changes the sequence of similar content in which
they appear, it is called unstable sorting.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Bubble Sort

31

� Bubble sort is a simple sorting technique.

� This sorting technique is comparison-based algorithm

in which each pair of adjacent elements is compared

and the elements are swapped if they are not in order.

� This sorting is not suitable for large data sets as its

average and worst case complexity are of Ο(n2)

where n is the number of items.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

4

Bubble Sort...

32

1) Starting with the first element (index = 0), compare

the current element with the next element of the

array.

2) If the current element is greater than the next

element of the array, swap them.

3) If the current element is less than the next element,

move to the next element. Repeat Step 1.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Bubble Sort

33

Let us take the array of numbers "5 1 4 2 8", and sort the array from lowest number to

greatest number using bubble sort. In each step, elements written in bold are being

compared. Three passes will be required.

First Pass

(5 1 4 2 8) → (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(1 5 4 2 8) → (1 4 5 2 8), Swap since 5 > 4

(1 4 5 2 8) → (1 4 2 5 8), Swap since 5 > 2

(1 4 2 5 8) → (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not swap

them.

Second Pass

(1 4 2 5 8) → (1 4 2 5 8)

(1 4 2 5 8) → (1 2 4 5 8), Swap since 4 > 2

(1 2 4 5 8) → (1 2 4 5 8)

(1 2 4 5 8) → (1 2 4 5 8)

Now, the array is already sorted, but the algorithm does not know if it is completed. The algorithm needs

one whole pass without any swap to know it is sorted.

Third Pass

(1 2 4 5 8) → (1 2 4 5 8)

(1 2 4 5 8) → (1 2 4 5 8)

(1 2 4 5 8) → (1 2 4 5 8)

(1 2 4 5 8) → (1 2 4 5 8)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

5

Bubble Sort

34 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Bubble Sort

35 Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/18/2022

6

Algorithm

36

� Bubble Sort (A, N)
� Here A is an array with N elements. This algorithm

sorts the elements in the array A.

� Step 1: Repeat Steps 2 and 3 for k = 1 to N-1.

� Step 2: Set PTR=1.

� Step 3: Repeat while PTR<= N-k:
a) If A[PTR]> A[PTR+1], then:

Swap A[PTR] and A[PTR+1].

b) Set PTR=PTR+1.

� Step 4: EXIT

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/19/2022

1

Complexity of Bubble Sort

Algorithm

37

� In Bubble Sort, n-1 comparisons will be done in 1st

pass, n-2 in 2nd pass, n-3 in 3rd pass and so on. So

the total number of comparisons will be:

F(n)=(n-1)+(n-2)+……………+2+1=n(n-1)/2

= O(n2)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Selection Sort

38

� Selection sorting is conceptually the simplest

sorting algorithm.

� This algorithm first finds the smallest element in

the array and exchanges it with the element in

the first position, then find the second smallest

element and exchange it with the element in the

second position, and continues in this way until

the entire array is sorted.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/19/2022

2

How Selection Sort Works

39 Dr. Sunil Kumar, CSE Dept., MIET Meerut

40 Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/19/2022

3

Algorithm

41

� Selection Sort (A, N)
� This algorithm sorts the array A with N elements.

� Step 1: Repeat Steps 2 and 3 for K = 1 to N-1:

� Step 2: CALL MIN(A, K, N, LOC)

� Step 3: SWAP A[K] with A[LOC]
Set TEMP= A[K],

A[K]= A[LOC],

A[LOC]=TEMP.

� Step 4: EXIT

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Algorithm...

42

� Procedure MIN (A, K, N, LOC)
� This procedure finds the location LOC of the smallest element

A[K], A[K+1],..., A[N], where A is an array.

� Step 1: Set MIN= A[K] and LOC=K.

� Step 2: Repeat Steps 2 for j=K+1, K+2,...,N:

If MIN> A[j], then set MIN=A[j] and LOC=j;

� Step 3: Return.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/19/2022

4

Complexity of Selection Sort

Algorithm

43

• The number of comparison in the selection sort

algorithm is independent of the original order of the

element. That is there are n-1 comparison during

PASS 1 to find the smallest element, there are n-2

comparisons during PASS 2 to find the second

smallest element, and so on. Accordingly

F(n)=(n-1)+(n-2)+……………+2+1=n(n-1)/2

= O(n2)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/31/2022

1

Quick Sort

52

� Quick Sort, as the name suggests, sorts any list very

quickly.

� Quick sort is not stable search, but it is very fast

and requires very less additional space.

� It is based on the rule of Divide and Conquer

(also called partition-exchange sort).

� This algorithm divides the list into three main

parts:

� Elements less than the Pivot

� Pivot element

� Elements greater than the pivot element

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Quicksort I: Basic idea

� Pick some number p from the array

� Move all numbers less than p to the beginning of the array

� Move all numbers greater than (or equal to) p to the end of the array

� Quicksort the numbers less than p

� Quicksort the numbers greater than or equal to p

p

numbers less

than p

numbers greater than or

equal to p

p

53 Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/31/2022

2

Partitioning (Quicksort II)

� A key step in the Quicksort algorithm is partitioning
the array
� We choose some (any) number p in the array to use as

a pivot

� We partition the array into three parts:

p

numbers less

than p

numbers greater than or

equal to p

p

54 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Quick Sort

55 Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/31/2022

3

How Quick Sort Works

56 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Algorithm

57

QUICKSORT(A, p, r)

1. if p < r

2. then q �PARTITION(A, p, r)

3. QUICKSORT(A, p, q-1)

4. QUICKSORT(A, q + 1,r)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/31/2022

4

Partitioning the array

58

PARTITION(A, p, r)

1. x � A[r]

2. i �p - 1

3. for j = p to r - 1

4. if A[j] ≤ x

5. then i= i + 1

6. exchange A[i] ��A[j]

7. exchange A[i+1] �� A[r]

8. return i+1

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Complexity of Quick Sort

Algorithm

59

• The Worst Case occurs when the list is sorted. Then the first

element will require n comparisons to recognize that it

remains in the first position.

• Furthermore, the first sublist will be empty, but the second

sublist will have n-1 elements. Accordingly the second

element require n-1 comparisons to recognize that it remains

in the second position and so on.

F(n)=(n-1)+(n-2)+……………+2+1=n(n-1)/2

= O(n2)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/31/2022

1

Insertion Sort

44

• It is a simple sorting algorithm that builds the final

sorted array (or list) one item at a time.

• This algorithm is less efficient on large lists than more

advanced algorithms such as quicksort, heap sort, or

merge sort.

• However, insertion sort provides several advantages:

• Simple implementation

• Efficient for small data sets

• Stable; i.e., does not change the relative order of

elements with equal keys.

• In-place; i.e., only requires a constant amount O(1) of

additional memory space.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Insertion Sort

45 Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/31/2022

2

Insertion Sort

46

1. We start by making the second element of the given array,
i.e. element at index 1, the key. The key element here is
the new card that we need to add to our existing sorted set
of cards(remember the example with cards above).

2. We compare the key element with the element(s) before
it, in this case, element at index 0:
� If the key element is less than the first element, we insert

the key element before the first element.

� If the key element is greater than the first element, then we insert it
after the first element.

3. Then, we make the third element of the array as key and
will compare it with elements to it's left and insert it at
the right position.

4. And we go on repeating this, until the array is sorted.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Insertion Sort

47 Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/31/2022

3

48 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Algorithm

49

� Algorithm : Insertion Sort (A, N)
� Step 1: Repeat Steps 2 to 5 for K = 1 to N-1

� Step 2: SET TEMP = A[K]

� Step 3: SET J = K-1

� Step 4: Repeat while TEMP <=A[J]
(a) SET A[J + 1] = A[J]
(b) SET J = J - 1

� Step 5: SET A[J + 1] = TEMP

� Step 6: EXIT

Dr. Sunil Kumar, CSE Dept., MIET Meerut

10/31/2022

4

Complexity of Insertion Sort

50

• The number f(n) of comparisons in the insertion sort

algorithm can be easily computed. First of all, the worst

case occurs when the array A is in reverse order and the

inner loop must use the maximum number K-1 of

comparisons. Hence

F(n)=(n-1)+(n-2)+……………+2+1=n(n-1)/2

= O(n2)

• Furthermore, One can show that, on the average, there will

be approximately (K-1)/2 comparisons in the inner loop.

Accordingly, for the average case. F(n)=O(n2)

• Thus the insertion sort algorithm is a very slow algorithm

when n is very large.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

1

Merge Sort

60

� Merge Sort is based on the rule of Divide and

Conquer. But it doesn't divide the list into two

halves.

� In merge sort, the unsorted list is divided into

N sub-lists, each having one element, because

a list of one element is considered sorted.

� Then, it repeatedly merge these sub lists, to

produce new sorted sub lists, and at lasts one

sorted list is produced.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Merge Sort…

61

• DIVIDE: Divide the unsorted list into two sub

lists of about half the size.

• CONQUER: Sort each of the two sub-lists

recursively. If they are small enough just solve

them in a straight forward manner.

• COMBINE: Merge the two-sorted sub-lists back

into one sorted list.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

2

Merge Sort...

62

� Merge Sort is quite fast, and has a time

complexity of O(n log n).

� It is also a stable sort, which means the

equal elements are ordered in the same order

in the sorted list.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

How Merge Sort Works

63 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

3

Another Example

64 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Algorithm

65

ALGO.: Merge-Sort(A, p, r)

1. if p < r

2. then q � (p + r)/2

3. Merge-Sort (A, p, q)

4. Merge-Sort (A, q + 1, r)

5. Merge (A, p, q, r)

// check for base case

// divide step

// conquer step

// conquer step

// conquer step

Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

4

Algorithm...

66

MERGE (A, p, q, r)

1. n1 ← q − p + 1
2. n2 ← r − q
3. Create arrays L[1 . . n1 + 1]

and R[1 . . n2 + 1]
4. for i← 1 to n1
5. do L[i] ←A[p + i − 1]
6. for j← 1 to n2
7. do R[j] ←A[q + j]

8. L[n1 + 1] ← ∞
9. R[n2 + 1] ← ∞
10. i← 1
11. j← 1
12. for k← p to r
13. do if L[i] ≤ R[j]
14. then A[k] ← L[i]
15. i← i + 1
16. else A[k] ← R[j]
17. j← j + 1

Dr. Sunil Kumar, CSE Dept., MIET Meerut

1 5 7 8 2 4 6 9

MERGE SORT EXAMPLE :
p q q + 1 r

1 5 7 8 infinity 2 4 6 9 infinityL R

i=1 2 3 4 5 j=1 2 3 4 5

1K

1 2 3 4 5 6 7 8

67 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

5

1 5 7 8 2 4 6 9

r

1 5 7 8 infinity 2 4 6 9 infinityL R

i=1 2 3 4 5 j=1 2 3 4 5

1 2K

MERGE SORT EXAMPLE :
p q q + 1

68 Dr. Sunil Kumar, CSE Dept., MIET Meerut

1 5 7 8 2 4 6 9

r

1 5 7 8 infinity 2 4 6 9 infinityL R

i=1 2 3 4 5 j=1 2 3 4 5

1 2 4K

MERGE SORT EXAMPLE :
p q q + 1

69 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

6

1 5 7 8 2 4 6 9

r

1 5 7 8 infinity 2 4 6 9 infinityL R

i=1 2 3 4 5 j=1 2 3 4 5

1 2 4 5K

MERGE SORT EXAMPLE :
p q q + 1

70 Dr. Sunil Kumar, CSE Dept., MIET Meerut

1 5 7 8 2 4 6 9

r

1 5 7 8 infinity 2 4 6 9 infinityL R

i=1 2 3 4 5 j=1 2 3 4 5

1 2 4 5 6K

MERGE SORT EXAMPLE :
p q q + 1

71 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

7

1 5 7 8 2 4 6 9

r

1 5 7 8 infinity 2 4 6 9 infinityL R

i=1 2 3 4 5 j=1 2 3 4 5

1 2 4 5 6 7K

MERGE SORT EXAMPLE :
p q q + 1

72 Dr. Sunil Kumar, CSE Dept., MIET Meerut

1 5 7 8 2 4 6 9

r

1 5 7 8 infinity 2 4 6 9 infinityL R

i=1 2 3 4 5 j=1 2 3 4 5

1 2 4 5 6 7 8K

MERGE SORT EXAMPLE :
p q q + 1

73 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

8

1 5 7 8 2 4 6 9

r

1 5 7 8 infinity 2 4 6 9 infinityL R

i=1 2 3 4 5 j=1 2 3 4 5

1 2 4 5 6 7 8 9K

MERGE SORT EXAMPLE :
p q q + 1

74 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Complexity of Merge Sort

Algorithm

75

� Let f(n) denote the number of comparisons needed to sort an

n-element array A using merge-sort algorithm. The algorithm

requires at most log n passes. Each pass merges a total of n

elements and each pass require at most n comparisons.

� Thus for both the worst and average case

F(n) ≤ n log n

� Thus the time complexity of Merge Sort is O(n Log n) in all

3 cases (worst, average and best) as merge sort always

divides the array in two halves and take linear time to merge

two halves.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

1

Heap Sort

76

� Heap Sort is one of the best sorting methods being

in-place and with no quadratic worst-case

scenarios.

� Heap sort algorithm is divided into two basic

parts:

� Creating a Heap of the unsorted list.

� Then a sorted array is created by repeatedly

removing the largest/smallest element from the

heap, and inserting it into the array. The heap

is reconstructed after each removal.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Types of Heap

�Max Heap

�Min Heap

77 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

2

1-Max Heap

Max-heap Definition:

• is a complete binary tree in which the value in
each internal node is greater than or equal to
the values in the children of that node.

Max-heap property:
� The key of a node is ≥ than the keys of its children.

78 Dr. Sunil Kumar, CSE Dept., MIET Meerut

2-Min heap :

Min-Heap Definition:

is a complete binary tree in which the value in
each internal node is lower than or equal to the
values in the children of thatnode.

Min-Heap property:
� The key of a node is <= than the keys of its

children.

79 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

3

Example

80 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example...

81 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

4

Example...

82 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example...

83 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

5

Example...

84 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example...

85 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/1/2022

6

Example

86 Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/2/2022

1

Algorithm

94

� Convert an array A[1 … n] into a max-heap (n = length[A])

� The elements in the subarray A[(n/2+1) .. n] are leaves

� Apply MAX-HEAPIFY on elements between 1 and n/2

Algo: BUILD-MAX-HEAP(A)

1. n = length[A]

2. for i ← n/2 down to 1

3. do MAX-HEAPIFY(A, i, n) 2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

4 1 3 2 16 9 10 14 8 7A:

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Maintaining the Heap Property

� Assumptions:
� Left and Right

subtrees of i are
max-heaps

� A[i] may be
smaller than its
children

Algo: MAX-HEAPIFY(A, i, n)

1. l ← LEFT(i)

2. r ← RIGHT(i)

3. if l ≤ n and A[l] > A[i]

4. then largest ←l

5. else largest ←i

6. if r ≤ n and A[r] > A[largest]

7. then largest ←r

8. if largest ≠ i

9. then exchange A[i] ↔ A[largest]

10. MAX-HEAPIFY(A, largest, n)

95

11/2/2022

2

HEAP-EXTRACT-MAX

Algo: HEAP-EXTRACT-MAX(A, n)

1. if n < 1

2. then error “heap underflow”

3. max ← A[1]

4. A[1] �� A[n]

5. MAX-HEAPIFY(A, 1, n-1)

6. return max

96

Complexity of Heap Sort

Algorithm

97

� The algorithm has two phases, and we analyze the complexity

of each phase separately.

� Phase 1.Since H is complete tree, its depth is bounded by

log2m where m is the number of elements in H. Accordingly,

the total number g(n) of comparisons to insert the n elements

of A into H is bounded as g(n) ≤ n log2n

� Phase 2.Reheaping uses 4 comparisons to move the node L one

step down the tree H. Since the depth cannot exceeds log2m , it

uses 4log2m comparisons to find the appropriate place of L in

the tree H. h(n)≤4nlog2n

� Thus each phase requires time proportional to nlog2n, the

running time to sort n elements array A would be nlog2n

Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/7/2022

1

Radix Sort

98

� A multiple pass distribution sort algorithm that

distributes each item to a bucket according to part of

the item's key beginning with the least significant

part of the key.

� After each pass, items are collected from the buckets,

keeping the items in order, then redistributed

according to the next most significant part of the key

and so on.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Radix Sort

99

� The idea is to consider the key one character at a

time and to divide the entries, not into two sub

lists, but into as many sub-lists as there are

possibilities for the given character from the key.

� If our keys, for example, are words or other

alphabetic strings, then we divide the list into 26

sub-lists at each stage.

� That is, we set up a table of 26 lists and distribute

the entries into the lists according to one of the

characters in the key.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/7/2022

2

Example

100

Input 0 1 2 3 4 5 6 7 8 9

P
a

ss
1

348 348

143 143

361 361

423 423

538 538

128 128

321 321

543 543

366 366

Example: Sort the numbers 348, 143, 361, 423, 538, 128, 321, 543, 366.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example...

101

Input 0 1 2 3 4 5 6 7 8 9

P
a

ss
2

361 361

321 321

143 143

423 423

543 543

366 366

348 348

538 538

128 128

Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/7/2022

3

Example...

102

Input 0 1 2 3 4 5 6 7 8 9

P
a
ss

3

321 321

423 423

128 128

538 538

143 143

543 543

348 348

361 361

366 366

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example:

103

� Sort the numbers 551, 12, 346, 311 using Radix sort.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

11/7/2022

4

Algorithm

104

� Step 1 - Define 10 queues each representing a bucket for
each digit from 0 to 9.

� Step 2 - Consider the least significant digit of each number
in the list which is to be sorted.

� Step 3 - Insert each number into their respective queue
based on the least significant digit.

� Step 4 - Group all the numbers from queue 0 to queue 9 in
the order they have inserted into their respective queues.

� Step 5 - Repeat from step 3 based on the next least
significant digit.

� Step 6 - Repeat from step 2 until all the numbers are
grouped based on the most significant digit.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Complexity of Radix Sort

105

The list A of n elements A1, A 2,……………A n is given.

Let d denote the radix(e.g d=10 for decimal digits, d=26

for letters and d=2 for bits) and each item A i is

represented by means of s of the digits:

Ai = di1 d i 2 … … … … … … . dis

The radix sort require s passes, the number of digits in

each item . Pass K will compare each digit with each of the

d digits. Hence C(n)≤ d*s*n

Dr. Sunil Kumar, CSE Dept., MIET Meerut

07-11-2022

1

Table of Contents

• Concept of Hashing
• Collision Resolution Techniques used in

Hashing :
–Open Hashing: Closed Addressing

• Separate Chaining

–Closed Hashing: Open Addressing
• Linear Probing
• Quadratic Probing
• Double Hashing

2Dr. Sunil Kumar, CSE Dept., MIET Meerut

Introduction to Hashing

3

• Suppose that we want to store 10,000 students records (each with a 5-digit

ID) in a given container.

� A linked list implementation would take O(n) time.

� A height balanced tree would take O(log n) access time.

� Using an array of size 100,000 would take O(1) access time but will

lead to a lot of space wastage.

• Is there some way that we could get O(1) access time without wasting a lot

of space?

• The answer is Hashing.

07-11-2022

2

Introduction to Hashing...

4

� Hashing is a technique used for performing insertions, deletions and finds in

constant average time O(1).

� The techniques employed here is to compute location of desired record to retrieve

it in a single access or comparison.

� This data structure, however, is not efficient in operations that require any

ordering information among the elements, such as findMin, findMax and

printing the entire table in sorted order.

Applications:
• Database Systems

• Symbol table for compilers

• Data Dictionaries

• Browser caches

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Hash Table

5

� The ideal hash table structure is an array of some fixed size,

containing the items.

� A stored item needs to have a data member, called key, that will be

used in computing the index value for the item.

• Key could be an integer, a string, etc

e.g. a name or Id that is a part of a large employee structure

� The size of the array is TableSize.

� The items that are stored in the hash table are indexed by values from
0 to TableSize – 1.

� Each key is mapped into some number in the range 0 to TableSize – 1.

� The mapping is called a hash function.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

07-11-2022

3

Example

6Dr. Sunil Kumar, CSE Dept., MIET Meerut

Hash Functions (cont’d)

7

• A hash function (h) is a function which transforms a key from a set, K,

into an index in a table of size n:

h: K -> {0, 1, ..., n-2, n-1}

• A key can be a number, a string, a record etc.

• The size of the set of keys, |K|, to be relatively very large.

• It is possible for different keys to hash to the same array location. This

situation is called collision and the colliding keys are called synonyms.

• A common hash function is:

h(x) = x mod SIZE

• if key = 27 and SIZE =10 then

hash address = 27 % 10 = 7

Dr. Sunil Kumar, CSE Dept., MIET Meerut

07-11-2022

4

• A good hash function should:
· Minimize collisions.

· Be easy and quick to compute.

· Distribute key values evenly in the hash table.

· Use all the information provided in the key.

8Dr. Sunil Kumar, CSE Dept., MIET Meerut

Collision Resolution

9

• If, when an element is inserted, it hashes to the same value as an already

inserted element, then we have a collision and need to resolve it.

i.e. For any two keys k1 and k2,

H(k1) = H(k2) = β

• There are several methods for dealing with this:

– Open Hashing: Closed Addressing

Separate Chaining

– Closed Hashing: Open Addressing

• Linear Probing

• Quadratic Probing

• Double Hashing

Dr. Sunil Kumar, CSE Dept., MIET Meerut

07-11-2022

5

Separate Chaining

10

• The idea is to keep a list of all elements that hash to the same value.

– The array elements are pointers to the first nodes of the lists.

– A new item is inserted to the front of the list.

• Advantages:

– Better space utilization for large items.

– Simple collision handling: searching linked list.

– Overflow: we can store more items than the hash table size.

– Deletion is quick and easy: deletion from the linked list.

Dr. Sunil Kumar, CSE Dept., MIET Meerut 31

Example

11

0

1

2

3

4

5

6

7

8

9

0

81 1

64 4

25

36 16

49 9

Keys: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

hash(key) = key % 10.

Exercise: Represent the keys {89, 18, 49, 58, 69, 78} in hash table using separate chaining,
hash(key) = key % 10.

07-11-2022

6

Example: Load the keys {23, 13, 21, 14, 7, 8, and 15} in this order, in a hash table
of size 7 using separate chaining with the hash function: h(key)=key% 7.

12Dr. Sunil Kumar, CSE Dept., MIET Meerut

08-11-2022

1

Collision Resolution with Open Addressing

13

• Separate chaining has the disadvantage of using linked lists.

– Requires the implementation of a second data structure.

• In an open addressing hashing system, all the data go inside

the table.

– Thus, a bigger table is needed.

– If a collision occurs, alternative cells are tried until an empty cell

is found.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

OpenAddressing

14

• In open addressing, there are three common collision

resolution strategies:

– Linear Probing

– Quadratic Probing

– Double Hashing

Dr. Sunil Kumar, CSE Dept., MIET Meerut

08-11-2022

2

Linear Probing

15

– Searches the hash table sequentially, starting from the

original location specified by the hash function

– Possible problem

• Primary clustering

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Linear Probing Example

• h(k, i) = (h(k) + i) mod m (i is probe number, initially, i = 0)

• Insert keys: 18 41 22 44 59 32 31 73 (in that order)

1841 2244 59 32

44 32
31

31

73

73

0 1 2 3 4 5 6 7 8 9 10 11 12

If a collision occurs, when j = h(k), we try next at A[(j+1)mod m], then

A[(j+2)mod m], and so on. When an empty position is found the item is inserted.

Linear probing is easy to implement, but leads to clustering (long run of occupied slots).

Clusters can lead to poor performance, both for inserting and finding keys.

How many collisions occur in this case?

h(k) = k mod 13

m = 13

11

Dr. Sunil Kumar, CSE Dept., MIET Meerut

08-11-2022

3

Another Example: Linear Probing

17

� Example: Insert keys {89, 18, 49, 58, 69, 78} with the hash

function: h(x)=x mod 10 using linear probing. Use table size 10.

� Solution:
� when x=89:

h(89)=89%10=9

insert key 89 in hash-table in location 9

� when x=18:

h(18)=18%10=8

insert key 18 in hash-table in location 8

Dr. Sunil Kumar, CSE Dept., MIET Meerut

h(49)=49%10=9 (Collision)

so insert key 49 in hash-table in next

possible vacant location of 9 is 0

18

�when x=49:

� when x=58:

h(58)=58%10=8 (Collision)

insert key 58 in hash-table in next

possible vacant location of 8 is 1

(since 9, 0 already contains values).

� when x=69:

h(69)=69%10=9 (Collision)

insert key 69 in hash-table in next

possible vacant location of 9 is 2

(since 0, 1 already contains values).

� when x = 78:

h(78) = 78 % 10 = 8 (Collision)

search next vacant slot in the table

which is 3 (since 0,1,2 contain values)

insert 78 at location 3.

49

58

69

78

18

89

0

1

2

3

4

5

6

7

8

9

Fig. Hash table with keys

Using linear probing

h(k) = (h(k) + i) mod m,

i= 0 to m-1

08-11-2022

4

Quadratic Probing:

19

� Quadratic probing is a collision resolution method that eliminates

the primary clustering problem take place in a linear probing.

� Compute: hash value = h(x) = x % table size

� When collision occur then the quadratic probing works as follows:

(hash value + 12)% table size,

� if there is again collision occur then there exist rehashing.

(hash value + 22)%table size

� if there is again collision occur then there exist rehashing.

(hash value = 32)% table size

� In general in ith collision

hi(x)=(hash value +i2)%size

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Quadratic Probing

• In general, searches the hash table beginning with the original
location that the hash function specifies and continues at
increments of 12, 22, 32, and so on

• Possible problem

–Secondary clustering

20Dr. Sunil Kumar, CSE Dept., MIET Meerut

08-11-2022

5

Example: Insert keys {89, 18, 49, 58, 69 78} in order with the hash-table size 10using

quadratic probing. Hash function: h(x)=x mod 10

21

Solution:

when x=89:

h(89)=89%10=9

insert key 89 in hash-table in location 9

when x=18:

h(18)=18%10=8

insert key 18 in hash-table in location 8

when x=49:

h(49)=49%10=9 (Collision)

so use following hash function,

h1(49)=(9 + 1)%10=0

hence insert key 49 in hash-table in location 0

when x=58:

h(58)=58%10=8 (Collision)

so use following hash function,

h1(58)=(8 + 1)%10=9

again collision occur use again the following hash function ,

h2(58)=(8+ 22)%10=2

insert key 58 in hash-table in location 2

49

58

18

89

0

1

2

3

4

5

6

7

8

9

Fig. Hash table with keys

Using quadratic probing

Dr. Sunil Kumar, CSE Dept., MIET Meerut

• when x=69:

– h(69)=69%10=9 (Collision)

– so use following hash function, h1(69)=(9 + 1)%10=0

– again collision occurs use again the following hash function ,

– h2(69)=(9+ 22)%10=3

– insert key 69 in hash-table in location 3

• when x=78:

– h(78)=78%10=8 (Collision)

– so use following hash function, h1(78)=(8 + 1)%10=9 ; again collision occurs

– use again the following hash function ,

– h2(78)=(8+ 22)%10=2 ; again collision occurs, compute following step

– h3(78)=(8+ 32)%10=7

– insert key 58 in hash-table in location 7

22Dr. Sunil Kumar, CSE Dept., MIET Meerut

08-11-2022

1

Double Hashing

• Uses two hash functions

• Searches the hash table starting from the location that one hash
function determines and considers every nth location, where n is
determined from a second hash function

23Dr. Sunil Kumar, CSE Dept., MIET Meerut

Double Hashing Example

• h1(K) = K mod m

• h2(K) = K mod (m – 1)

• The ith probe is h(k, i) = (h1(k) + h2(k) ⋅ i) mod m

• Insert keys: 18 41 22 44 59 32 31 73 (in that order)

1841 2244 59

44

32

31

3173

0 1 2 3 4 5 6 7 8 9 10 11 12

How many collisions occur in this case?

44 % 13 = 5 (collision), next try: (5 + (44 % 12)) % 13 = 13 % 13 = 0

2

31 % 13 = 5 (collision), next try: (5 + (31 % 12)) % 13 = 12 % 13 = 12

m = 13

Dr. Sunil Kumar, CSE Dept., MIET Meerut

